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Abstract—Momentum and heat transfer in power-law fluid flow over arbitrarily shaped two-dimensional or
axisymmetrical bodies are examined theoretically. The Merk type of scries expansion technique is used for
the momentum analysis. For convective heat transfer, a generalized coordinate transformation is employed
to analyze the temperature field in a laminar boundary layer for the body with a step change in the surface
temperature distribution. In both momentum and heat transfer, the solution to the governing equations are
obtained as universal functions which are independent of the geometry of the probiem. The numerical and
closed-form solution to the universal functions are found and then applied to analyze wedge flow and flow
over a circular cylinder.

NOMENCLATURE X, streamnwise coordinate measured along
f(& 0); surface from forfvard. slagnation point;
parameter defined in equation (35); Xon location in x dlrccl'lon w.her'e the wall
parameter defined in equation (34); . temperature has a discontinuity; _
constant in wedge flow; X, transfgrmed dimensionless coordinate ;
¥ coordinate normal to surface.

friction coefficient;
specific heat at constant pressure;
dimensionless stream function;

H (x — x,) Heaviside function;

K,

L.‘

thermal conductivity;

consistency index for non-Newtonian
viscosity ;

characteristic length ;

BI2 - B);

power-law cxponent;

Nusselt number, q,L/k(T,, — T.);
local Nusselt number, q,, x/k (T — T ,);
generalized Prandtl number,

pe, U, LIk(Re)*" 1

generalized Prandtl number for wedge
flow defined in equation (69);

heat flux;

radius of an axisymmetrical body at the
point x;

generalized Reynolds number,
PULLYK;

generalized Reynolds number for wedge
flow, pU ™ "x"/K;

temperature;;

velocity component in x direction;
velocity just outside boundary layer;
free stream velocity;

velocity component in y direction;

Greek symbols

o, thermal diffusivity;

B, included wedge angle;

I'(n,x), incomplete Gamma function,
foettntde;

4, x/L in the flow over a circular cylinder;

L, transformed dimensionless coordinate;

n, dimensionless coordinate ;

0, dimensionless temperature;

A, wedge variable;

¢, dimensionless coordinate;

IR density ;

Ty shear stress;

Tus shear stress at wall;

v, stream function.

1. INTRODUCTION

THE TRANSPORT phenomenon in power-law fluid flow
has been investigated in several articles recently due to
the frequent use of this type of fluid in modern
industry. The power-law model, which the present
analysis is concerned with, belongs to the group of
fluids categorized as the time-independent non-
Newtonian fluids. It can also encompass Newtonian
fluids by virtue of its expression of the shear stress in
terms of the shear rate.
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Despite much effort, the extreme difficulty en-
countered in the boundary-layer analysis, due to the
high degree of non-linearity in the momentum equa-
tion, still invites a general yet simple method for
analyzing power-law fluids. The initial investigation of
the external boundary layer in power-law fluid flow
has been made [1]. A theoretical analysis was pre-
sented for the laminar flow past an arbitrary 2-dim.
surface by using the similarity transformation. The
numerical analysis of the velocity field for flow past a
horizontal flat plate was given. Using a linear velocity
profile, as in a similar analysis [2], the partial differen-
tial energy equation could be transformed to an
ordinary differential equation. Since then, the simi-
larity transformation for power-law fluids has been
further investigated [3-8]. The similar ordinary differ-
ential equation for the velocity field in a wedge flow has
been shown [9]. The authors also solved the energy
equation using a generalized coordinate transfor-
mation initiated for Newtonian fluids [10].

In his paper, Merk [11] devised a new technique for
analyzing the laminar boundary-layer transfer for a
submerged body in Newtonian fluid flow by using the
“wedge method” propounded by Meksyn [12]. Merk’s
transformation enabled him to reduce the boundary
layer equation to the ordinary differential equation of
identical form to one obtained earlier [13]. The main
difference between them, however, lies in the solution
technique for the equation, which was explained well
in ref. [14]. The accuracy of Merk’s expansion method
drew the attention of some authors [15, 16]. Recently,
Lin er al. [17] examined the velocity field for power-
law fluids using the Merk-type series expansion. Only
the similarity solution, ie. the f, function for the
momentum transfer was presented. No attempt has
been made to obtain the remaining universal functions
and heat transfer functions.

In the present analysis, the Merk series expansion
method is employed for the momentum analysis. Then
the temperature field and the rate of heat transfer are
investigated for the same problem with a step in the
surface temperature distribution by employing the
generalized coordinate transformation.

Surface temperature ,step changed

Forward stognotion point

F1G. 1. Physical model and coordinate system.
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2. FORMULATION OF GOVERNING EQUATION

The assumptions used for the boundary-layer ana-
lysis of power-law fluid flow may be stated as follows:

(a) The fluid is incompressible and all physical
quantities are constant.

(b) The boundary layer is steady laminar flow, and
the flow outside the boundary layer is a potential flow.

(c) There are no external body forces.

(d) The Mach number is small, and heat conduction
in the x-direction is neglected. A physical model with
the coordinate system is shown in Fig. 1.

Under the above assumptions, the boundary layer
equations can be expressed in general form as follows:

Continuity equation

a(ru)  o(rv
(), 20) 0
ox ay
Momentum equation
¢ Cu du, 12¢
llg—lf + vﬁ— =U + =ty )

cy “dx  péy

with the boundary conditions

u=v=0 aty=0,

u=U, atx=0,y>0, 3)
u=U/(x) aty— o

where U, (x) is the velocity of the mainstream at the

outer edge of the boundary layer. For the power-law
model, the shear stress can be expressed as

=K (2—2) @)

where n is called power-law exponent which is a non-
negative dimensionless index parameter, and K is a
consistency index for non-Newtonian viscosity which
is also a non-negative but dimensional quantity.

Energy equation.

0
H——tv_—=a_—— &)
with the thermal boundary conditions

T(x,00=T, + (T, - T,)H({x — xo),
TO,y>0)=T,, (6)
Tx,xz)=T,

where a is the thermal diffusivity and H (x — x,) is the
Heaviside function.
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3. SOLUTION METHOD OF THE MOMENTUM
EQUATIONS

In order to satisfy the continuity equation, the
'stream function ¥ (x, y) is introduced such that

b=t )

The x — y coordinate system is transformed into a
dimensionless system by adopting new dimensionless
variables

. nk _ HJ*.\: (Ue)ln—l n+1 dx
g_ p X o U.l L L ’

(8)
1 1 (n+1) U
- [(n + 1)5]

The stream function also can be nondimensionalized
by defining

ry
LLL

¥=[n+ 1] " U, L2 n). ©)

By using new variables, the velocity components in the
boundary layer can be expressed as

o nk Ux n-1 Ue 2n-1 r n+1
' pr \ L U, L

of
x [(n + l)g’]‘"'(”“’{f+ (n+ I)éa—é

+1)¢d é
+[A+(n )C_":_l]’]f‘_f}'
rdé cn

The momentum equation is transformed into

(10)

of".f)
3(&,n)
(1)

SUUNT AL A M =S = o DEG

where the primes stand for differentiation with respect
to 7 and

AN _F
qem ol T

is the Jacobian.

For 2-dim. flow, r is simply replaced by L in all the
above equations. The corresponding boundary con-
ditions become

J(&0)=/"(5,0)=0,
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S &)=L (12)

The wedge parameter, A, appearing in equation (11) is
a function of &, i.e. x only, and can be expressed as

(n+1)¢dU,
S U dg

=(n+l)§_p_ A 1-2n 2o 14U,
U. nK\U, L dx

(13)

By employing the Merk-Meksyn procedure, (¢, #, n)
can be expanded in a series form as

dA
[ mn) = fo (A, n,n) + (n + I)C"Efl(l\,'l, n)

+(n+ 1)252 fz (A,,n)

dé?

+ [(r1+ l)&i—?}ﬁ(/\,)},lz)+... (14)

Substituting f from equation (14) into equation (11)
and arranging the terms which are free of (dA/dE),
and then terms with (n + 1)&(dA/dE),
(n 4+ 12 E2(d2A/dE?), and [(n + 1)(dA/AE)]? ..., Te-
spectively, the following set of sequential differential
equations is obtained:

S8+ S8+ A =) (5 ™" =0
v+ Q-0
+ AL =n)(1 =D
—QCA+n+ DY oS 1+ (1 +2)

(15)

(fO’O
n\2-n — 1-n
(o) ~"fi = (fo) A (16)
Y+ Q=m0 T"f3
+ A=) (L =)™

=2A +n+ 1)) "fof> +(Q2n +3)

L =00 I = foh),
T+ Q2=nm() TS

+ A=A =) 5 —2(A
0+ D) o3+ 2n+ )P

= (n+2)(n—2)(f5) "ffT
+(A+n+ D) TS

(a7

+ (% - 1>(" - D =206 o
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(n—1)(n-2)
NI

Am—l] — SRS ()

+ (L =n)QA+n+ D) [ 16

+ (1 =gy Lol

)
2’))1_"6.,(/‘6’f1) + ” 1-n6“(f'lv 0) (18)
6(An) &(An)
with the corresponding boundary conditions
Jo(A0,n) =f4(A,0,n)=0; fo(A, oc,n) =1,

fl (A’O’ ") =fll (Ar()’”) =fl (A)
LA 0n) =f5(A,0,n)=f%(A, o0,n) =0,
S3(A0,n) =15(A,0,n) =f5(A, o0,n) = 0.

oo,n) =0,

With any given value of A, which is fixed at any
streamwise location x, the above equations can be
regarded as ordinary differential equations and the
solutions to these equations become universal.

There may not be any analytic solutions to the
above equations, and thus as the solution method one
must resort to numerical analysis. The classical fourth-
order Runge-Kutta method was employed with in-
tegrating step-size control. Since the method com-
monly used in the initial-value problem was adopted in
this asymptotic type of boundary-value problem, the
assumed initial-value of /'] (0) should be provided and
the resulting solution must satisfy the remaining
boundary conditions, ie. its first derivative and an
additional condition which is the second derivative at
the outer edge of the boundary layer. The additional
boundary condition f7 (¢0) is required due to the
nature of the asymptotes in the solution. In the
practical sense, the initial value of f} (0) cannot be
known exactly so that an iteration procedure must be
used. The Newton-Raphson technique was used for
this purpose. A difficulty encountered in this numerical
integration method is a singularity at infinity in
equation (15) due to the third term of the equation for
dilatant fluids when 1 is between 1.0 and 2.0. This type
of singularity, however, can be removed if the limiting
process is adopted. The L’Hospital Rule was applied
for this process with control of the integrating step size.
When n is greater than 2, equation (15) represents the
two point boundary-value problem which means the
1. being finite, as pointed out by Acrivos et al. [1].
This phenomenon is attributed to the power-law
exponent, n, and hence is not encountered in either
Newtonian fluids or pseudoplastic fluids.

To obtain numerical results, several physical models
of fluids are considered. 23.3% Illinois yellow clay in
water (n = 0.229), 0.67% CMC in water (n = 0.520),
and 10% napalm in kerosene (n = 0.716) for pseudo-
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plastic fluids. Newtonian fluid (n = 1.0) and ethylene
oxide in sodium chloride solution (n = 1.2, 1.6, 2.0) for
dilatant fluids are also used. The choice of the upper
limit of n was based on the fact that most power-law
fluids have the value of n less than two.

A general computer program was developed for the
first three equations. Although the velocity profile can
be obtained from the computer program, the main
interest is in the velocity gradients at the wall, in order
to obtain the drag on the body and the rate of heat
transfer. For this purpose, the numerical results of

0(0).17(0), and f5(0) for the given values of n and A
are tabulated in Table 1. They are compared with
those of Chao [14] when n is unity. Itis found that the
values of £ (0) in both analyses agree to 11 digits and
those of /'] (0) and £ (0) differ by 0.25%, at most. The
numerical results of £3(0) for non-Newtonian fluids
are compared with those of refs. [8, 9]. The maximum
discrepancy between them is 49 and 02%,
respectively.

Once the velocity functions are known, the local
friction coefficient can be readily calculated. Since the
shear stress was defined in equation (4), the shear stress
at the wall is given by

0 =K ((u>
dy
1 I (n+1) UZ n r n
=K - < —
[(n+ l)g:I <UXL) (L)

X[f (0)+("+l)c f"(0)

2 n
+(n+1)? “ZiCA 7(0) + .. ] (19)

Defining the local friction coefficient by ¢ =
1,/(pU?2/2) then

1 1,(n+1) Ue 2n 1 ry
C‘zz[(wné] ) m @

d2A "
“Zd,z 70) + .. ]
(20)

:/

+m+1)¢

where
Re=pU% "L"K

is a generalized Reynolds number.

4. SOLUTION OF THE ENERGY EQUATION

In order to solve the heat transfer problem with a
step change in the surface temperature distribution,
further coordinate transformation for the energy equa-
tion is needed. For this purpose the new dimensionless
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Table 1. Numerical results of f (0) for power-law fluids

n A 150) £i(0) x 10 1(0) x 10?
2.68341 19568071 — 01502860  0.0886065
2.0 1.5565997 — 02028859 0.1474157
1.5 1.2485316 — 0.2685225 0.2350089
1.0 09221991 — 03874294 04259752
: 0.75 0.7494606 — 04903864 0.6180423
0.229 0.50 0.5676960 — 06565673 09682217
025 03731422 — 09600644 1.7011382
0.00 0.1585939 — 1.6278791 35851544
-0.10 0.0646986 — 21474721 52446473
- 015 0.0160405 ~ 2.6003656 67798058
146154 136246393  — 021494049  0.17050786
1.25 123990722  — 025247219 0.21780692
1.00 1.08656532  — 031420028  0.30224534
0.75 092140437  — 040784471 044311522
0.520 0.50 073995249  — 056329145  0.70236620
025 053374449  — 086088559  1.25704889
0.00 028193462  — 1.61881113  2.84021463
~0.10 0.15386494  — 243663056  4.63630326
—0.15 007461074  — 345034669  6.81761648
1.19832 127454773 — 022412658  0.18268289
1.00 116036533 — 026933531 0.23835769
0.75 100414043 — 035337571 0.35052194
0.50 082904080  — 049456703  0.55770961
0.716 0.25 062451676  — 077061857  1.00621228
0.00 036313757  — 1.51689628  2.35484749
-0.10 022193012  — 241167773  4.06219319
~-015 012961836  — 362337789 637719317
1.0 1.232587657  — 021495486  0.1701345
0.75 1090441562  — 028526627  0.2509169
0.50 0927680040  — 040504497  0.4009941
1.0 025 0731940849  — 064497584  0.7311176
0.0 0469599988  — 1.33284826  1.7790514
-0t 0319269760  — 222364220 32220740
—-015 0216361406  — 347115850  5.2949057
1.0 126641921  —0.18467854  0.13594487
091667 122409277  — 020213430  0.15370956
0.75 1.13386852  — 024654164  0.20076631
12 0.50 098034168  — 035276925  0.32166537
025 079280349  — 056842709  0.59013672
0.0 053506307  — 1.20450065 146453568
- 0.10 038295155  — 205212058 270380187
—-015 027664817  — 323918625  4.48784407
1.0 1.3074729 — 0.1389691 00896980
0.8125 12225340 ~ 01728273 0.1196185
0.75 1.1920803 - 0.1872365 0.1328106
16 0.50 1.0560872 - 0.2712033 0.2138341
025 0.8860135 — 04453047 0.3966827
0.0 06433860 ~ 09798961 1.0146403
010 04940646 — 17179589 19224022
- 0.5 0.3868320 — 27473601 3.2270801
1.0 1.326903 —0.107393 0.061742
0.75 1.225727 — 0145714 0.091659
0.60 1.156237 —0.180923 0.120725
20 0.50 1.104986 — 0.213007 0.148203
025 0951416 ~ 0.354769 0.277481
0.0 0726468 — 0.801947 0.725504
-0.10 0.584034 — 1432707 1.398180
- 015 0.479965 — 2308608 2362014
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variables, X, {, and the dimensionless temperature 0

are defined as
: &Y "
A=[1—-(=—
- (]

. n
=b©E)L, 21
¢ ('f)X (21)
T-T
A”v = x
0(X.¢) T. T,
where &, is defined by
. ”k U"_ZL—" Xo U: )Zn—l r>n+l dx
CO - P x o Ux L L N
(22)

The coordinate transformation of equation (21) was
first proposed by Chao and Cheema [10] for con-
vective heat transfer with a non-isothermal surface for
wedge flow and later generalized by Jeng et al. [16].

On substituting u and v expressed by equation (10)
into equation (5), the transformed energy equation
becomes

&0 [+ 1)gJrory of
6;2+{ (1 + Deab [f”"“’é&]

cf(n+ DEPC* D (1 — X?3)

3ab?¢ X
_losngpema g
ab? d¢ oy

N (&)2"’2 nK (er>"_‘ €0 c[(n+ 1)g)re+n

U p \ L2 & 3ub? &

x

U N""2nk (U_r\'=' of ¢0
X —|—= ——=0 (23)
U, p\ L on X
with the equivalent boundary conditions in dimen-
sionless form

0(X,0)=1,

0(X, c)=0. (24)

The dimensionless stream function fis now expanded
in a power scries as

fGm= % ﬂm(é)::?- (25)

m=2

The coefficient appearing in the above equation can be
determined by substituting f from equation (25) into
equation (11) and rearranging in terms of like powers
of
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52
a2(€)=# =4da,

(13(6)= __Aal—n’
a;($y=01-n)A?a' "2,
as(@)=m+1)¢aa*""—(1 —m({1 —2m)A3q'

+QA-1)a* "

1

a(E)=(1-—mCn—-1)Bn—=1)A*al 4

+[4A(n - 1)(2A — 1) — 6A(6A — 4)
—2(n+ 1)EA]a* 2"

+6(n— )+ 1)EAada> " (26)

where the primes stand for differentiation with respect
to ¢. The unknown function a is determined by using
the value of f{ (0) obtained in Section 3. Now, using the
new variables { and X, f can be written as

a8, as () a, (&),
/= 21p2? X+ 31p3 41p* .
as (&) ag ()8
55!b5 X3 66!b6 X+ @7

The solution toequation (23)is then expanded in series
form

0ELX) = Y 060X (28)
k=0
with
0(£,0) = 1:0, (2,0) = 0, (2,0) = 05 (&, 0) = .. = 0,
00 (&, 00) = 0y (& 00) = 05 (£, o2} = 0 (&, %) = ... = 0.
(29)

Thus the boundary conditions in equation (24) are
satisfied. By substituting f, (f/¢n), (6f/¢&), and 0 from
equations (27) and (28) into equation (23) and equat-
ing the coefficients of like powers of X with a proper
choice of c and b (£), the following sequence of second-
order, linear differential equations can be obtained:

‘;2—;)20 + 32 660; =0, (30)
a(;coz * 38%— 30, = —%,5‘7;,0 ifg’, a1
- 23(2317 g ;0: 23::1; 20, (32)
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&0y

Av)

+32D _grp [ I s 4

& 84,05 2+ 1)e

XCZ_*_%ﬁ"Z_gCiCZ_{_ :2
cb d¢ 2ca,

04 ay ., €0,

o 24,02 &

3a co a,
_ 3 C; - .«2 4 LJ 01
2a,b 7 &

+ 2a,b*”

3ay
+=00
asz 2

(33)

where

3

“=3aTD) B9

and

3~ 1l-n)(ntl)
b(é) = {m[”(” + l)]Z(n+ 1) <R;§)( )

n

Ue 2(n—1) r n—1

x (U_‘) <z) a, Pr}. (35)

The solution to cquation (30) is

r'(1/3,{%)
0g=1—-——"- 36
0 T(1/3) (36)
thus,

05(0) = 1.1198. 37

In order to obtain each solution to the above equations
in terms of universal functions, 0,’s are rewritten as

0,=M0,
0,=M0,,+N0,,

(38)
(39)

05 =My, + MNOs ,+ PO, 3+ Q05 ,, (40)

where

- 9
T 8a,b*’
3 3¢db 3Ed,
=3{1- S .
Q [ 2(m+ 1)c + chbdé  2ca, “n
Therefore, the equations (31)-(33) become
0% + 30205 — 360, = %0, 42)
“7
05 + 30205, — 630, =505, @3)
055+ 30205, — 610, , =(*0, (44)
05, +30205,-900,, =30, , —2020,,, (45)
0-’.';.2 + 3C2 0—'32 - 94‘0—3_2
=000-00, + Cso-z,z - 272 0, (46)
055+ 3020 5 — 9005 5 = 500, 47
0-’3‘4+3520'3_4—9§0'3_4 =201, (48)
with the boundary conditions
0,(0) = 0y(2) = 0, ,(0) = 7, , (ox)
=0,,(00) =0, (=)
= 03_1 0)= 0.3_1(‘-73)
= 03.2(0) =0;,(0) = 03.3(0)
=0;.3(00) = 05 4(0) = 0, 4(0) = 0. 49)

The solutions to equations (42), (47) and (48) are of the
closed form

S N S W L
01_5”1/3)[r<3> r<3"' )J (50)

then
1
030 =5, (s1)
1 2 .
05 = 9T (1/3) (3( + C‘)C s (52)
Oy = e 53
4= er/3)°° (53)
and
04 5(0)=-- 2 (54
3.3 )—'z.lm, )
fl 0 — 1
3.4(0)= 6T (13)" (55)

There seems to be no closed form solution to the
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equations (43)-(46). Hence the equations have been
integrated numerically. Since equations (43) and (44)
are of identical form to equations (3.39) and (3.40) in
ref. [15], respectively, the numerical tabulation given
there can be used for comparison. The numerical
results of 85, and 0, , are tabulated in Table 2. The
first derivatives of the above numerical solutions at
{=0are

0% ,(0) = 0.81748 x 1072, (56)
0%_,(0) = 0.40872 x 1071, 57)
0, ,(0) = 0.17205 x 10~2, (58)
%, ,(0) = 0.12904 x 1071, (59)

c0 1 A a
<— ::—C);=0 = L198 ~ 104 [6(11 + 1)

- [2(0.0()81748) _u-n
4 2
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then

1 1,(n+1) U
=k(T, - T £
4. = k(T, x)[(’2+1)§:] UL

ax

(nz +n)2.(n+1) REé (1=mAn+1) U 2n-1)
X — {2 3
6(n+1) < n ) (UI>

r n-1 1/3 66
M x-=
" <L) ”’] ( ac><=o

where

(61)

Reé (1-my n+ 1) /7] \2n—1) ANUESY) -1
2 2/(n+t 1) ¢ r P
x (n? + n) - ) i % T . X

X (0.040874)] (%)2

“\N(1=-n)(1+n 2n—2 n-1 -2/3
LRI ) S Rec (L. r Pr X2
6(n+1) n U, L

~ {0.062214 [2(;1 —DEA-1) -+ 1)5% +2(n? - 1)§d_']

27
+ |:—- (0.0017205) —

3(L -n)
8 4

rdé

3
X (0.012904)] <vA—") _6("—-*-12 (”2 + ”)—2,(n+l)
a a

Re¢ \! i+ /1y 2(1 —n) AN i
(Tg‘) (U—) (z) prt —§(0.02765)

[(ZA = Da™" = (1= m(t = 2m) @)3 - 1)éa*‘"a']
a

6(n + 1)("2+n)_2‘("“) (EY-“'(”” (_U_,)z“""
a

n

(62)

r 1—n
) " me .

The dimensionless temperature in boundary layer is,
thercfore, written as

0(&8X) =00+ MO, X + (M?0,, + N0, 5) X?

+ (1‘130—3_1 + A‘IN 0-3'2 + PO’J.:; + Q0—3.4).

X +... (60)

The local heat flux at the wall is given by

oT
o= — K4—

~ )
ay

¥=0

U

x

Equation (62) is identical to that of Jeng et al. [16]
when n is unity.

If the Nusselt number is defined by Nu =
quL/k(T, — T ), then

NuRe~ 1041 1 BN \Ler by,
nn+1) Re¢ U,
(”2 +”) 2 ,(n+1) Ref {(1~n) (n+1)
x [6 o+ 1)] (T)

U \Xr=1) fp \n—1 13
x(U'> (Z) Pra:l Xt

(63)
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Table 2. Numerical results of 03 , and 8, , functions

¢ 0., (0) 05.©) 0;.,(0) 05.,6)
0.0 0.0 00 0.172047 - 02 0.0 .00 0.129035 -0l
0.2 0.345340 - 03 0.174472 - 02 0.255037 - 02 0.130935 -0l
04 0.706001 -03 0.188811 - 02 0.530487 -02 0.142778 -0l
0.6 0111202 - 02 0.220069 - 02 0.839461 —-02 0.167885 — 01
0.8 0.159489 -02 0.263162 - 02 0.119814 -0l 0.185204 - 01
1.0 0.214531 - 02 0.273829 - 02 0.152926 -01 0.125951 - 01
1.2 0.258697 - 02 0.130933 - 02 0.161311 -01 —0.598489 —-02
14 0.252623 —02 —0.212250 - 02 0.127948 - 01 —0.257521 — 01
1.6 0.178532 —02 —0483260 - 02 0.704435 —-02 —-0.282275 -0l
1.8 0.833569 —03 —0413904 - 02 0.242826 —02 —0.158842 - 01
20 0.240189 —-03 —0.180663 -02 0.561590 —03 —0494263 —02
2.2 0404829 —-04 —0417781 — 02 0.736835 - 04 — 0.850734 — 03
24 0.383711 —-05 —0.507224 - 04 0.546178 —05 —0.792545 -4
2.6 0.237521 —06 —0.310993 - 05 0.218863 —06 —0.387334 - 05

tis noted that the term Re¢/n appearing in the above
quation is equivalent to the expression

X Ue 2(n—1) r n+ldx
L&) @ T

vhich is dimensionless and independent of any physi-
al units.

5. APPLICATION OF ANALYSIS

The general expression of momentum and heat
ransfer have been derived for arbitrarily shaped 2-dim.
w axisymmetric bodies with step-changed non-
sothermal surfaces in power-law fluid flow. The
pplicability of this analysis is examined by analyzing
ertain cases of geometry with a step-change in the
urface temperature (including the isothermal surface)
1y regarding it as an extremum case of the non-
sothermal boundary condition. The flow geometries

selected are wedge flow and flow over a circular
cylinder. Examples for axisymmetrical bodies will not
be presented but the analysis would be straightforward
using the procedure given in this analysis.

5.1. Wedge flow

For the case of a wedge flow, the velocity at the outer
edge of boundary is given by U, = C x™ providedm =
B/(2 — B). In the above expression, C is a constant and
Bisanincluded wedge angle divided by n. According to
the transformation in Section 3,

cnt nkK
z il —{n+ 1) . m{2n—11+1
¢ m@n—1+1 p w-.L Y ’
(64)
1
Ao mn + 1) (65)

T mn—=1)+1

Therefore A becomes constant. This phenomenon
makes the set of equations in the series reduce to a

Table 3. 1C(Re,)! "+ 1 for wedge flow

A n=10229 A n=0.520 A n=0716
2.68341 1.276936 1.46154 1.290100 1.19832 1.268198
1.50 1.212229 1.25 1.225968 — —
1.00 1.161385 1.00 1.141980 1.00 1.152096
0.75 1.124061 0.75 1.045738 0.75 1.004359
0.50 1.071923 0.50 0.930896 0.50 0.848719
0.25 0991041 0.25 0.783684 0.25 0.673092
0.00 0.830733 0.00 0.561079 0.00 0444320

—-0.10 0.682246 —0.10 0409875 —0.10 0.309080
- 0.15 0497885 —0.15 0.281444 —0.15 0.209237
—0.164 0302594 —0.18 0.079187 —0.188 0.045900

A n=12 A n=16 A n=20
091667 1.210039 0.8125 1.173542 0.75 1.14655
0.75 0975388 0.75 1.023729 0.60 0.74580
0.50 0.708620 0.50 0.636713 0.50 0.58699
0.25 0489868 0.25 0.396683 0.25 0.33210
0.00 0.278048 0.00 0.205388 0.00 0.15983

- 0.10 0.179967 —10.10 0.128046 —0.10 0.09694
— Q.15 0.119881 —0.15 0.084551 —0.15 0.06356
-0.20 0.026202 —-020 0.025249 —-0.20 0.02402
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Table 4. Numerical results of C; (Re,)!*"*V for flow past a flat plate

n 0.229 0.520 0.716 1.0 1.2 1.6 20
Acrivos et al [1] 0.840 0.562 0.445 0.332 0.275 0.205 0.161
Present analysis 0.832 0.561 0444 0.332 0.278 0.205 0.160

single equation, namely the f; equation which repre-
sents the local similarity. It is interesting to note that
for certain geometries the values of A become constant
for all values of n. Some values of A are for example, A
= 0foraflatplateand A = 1/2for aright angle wedge.
The laminar boundary layer for these cases have been
examined, as mentioned in the Introduction.

Following the definition of equation (20), the local
friction coefficient can be written as

pxnu2—n 1/(nt+1) U ‘ 3n,(n+1)
Cf x £
K U,

) m2n—1)+1
B nn+1)

1 (n+ 1)
] [f5(0)]". (66)

If a flat plate with a length of L in Newtonian flow is
considered, equation (66) becomes

2
CiRe'” = 7 17 (0).

For both sides of the plate, C; Re'? = 1.3282 which
agrees with the solution obtained by the Blasius series.

For wedge flow especially, another expression for
defining the local friction coefficient is frequently used.
This is given by C; = t,,/pUZ2/2. Then,

PRESENT METHOD

LEE & AMES [7]

02 b

00 s L L
00 Q5 1O 15 20
n

LC(Re D ={[(n+1)

= AQ@n — 1)]n} =t Orgn o)
(67)

where

Re, = ﬁ\c"Uf‘" =P cr-nymiz-min

K- K (68)
The numerical results of 1/2 C; (Re,)' " are pre-
sented in Table 3 for selected s and A’s. The
numerical results for a right-angle wedge flow are
compared with those of Lee et al. in Fig. 2. The results
agree within 0.5%. For further examination of the
accuracy, the present results for flow past a flat plate
are compared with those of Acrivos er al. [1] and are
tabulated in Table 4. It is noted that the values from
Acrivos et al. were read from Fig. 4 in their paper. Thus
they may not present the exact values which the
authors originally presented. Generally, the agreement
between these two analyses can be regarded as fairly
good.

In addition to the drag coetficient, another impor-
tant flow characteristic is the separation of flow. The
separation point of wedge flow for various values of i
can be found by determining the value of A from
equation (15). The A is denoted by A, which makes the
velocity and its derivatives at wall identically vanish.
The A, are —0.166, —0.182, —0.190, — 0.199,
— 0204, — 0.212 and — 0.218 for the corresponding n
being equal to 0.229, 0.520, 0.716, 1.0, 1.2, 1.6 and 2.0,
respectively. When n is unity, A is equal to — 0.199
which agrees with the separation point for Newtonian
fluid obtained by Blasius series expansion. However,
prediction of the separation point for power-law fluid
flow over an arbitrary body by the present method
may not be possible.

For the rate of heat transfer at the wall in wedge
flow, the Nusselt number defined in equation (62) will
be slightly modified for the direct comparison of the
present results with those reported in literature. It is
not difficult to show that the term

Re¢ (n=1)/tn+ 1) /1] \2n=1) /) \n—1
— —= - aPr
( n ) (U) (L>

in the general expression becomes

l (1—n),(nt+1) pcp l\ 2/(nt+1)
- - alr (2
F1G. 2. Comparison of § C¢ (Re,)!""* " for flow over aright |m(2n — 1)+ 1 k

angle wedge.
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(CJ xlm—l)(n—l) (n+1)

>r wedge flow. Now, let us define the generalized
randtl number for wedge flow as

Pr

x

p: k )2 . l)(csxgm-x)m—n.w’f D (69)

‘he local Nusselt number, Nu,, is then defined by
N“x ={qw Y/I\(T“ - To:)

co
= Cpu(Re,) "D (Pr) X (— C—,> (70)
aQ =0

there

afm@n— 1)+ 1][m@2n 1)+ 1]’ ""”’}”3
{6 n+1) nn+1) ’

{ ( )31"1(2n 1)+1]2(n+1)}] 3
b= a n2.0t n+1 (l—n),(n+1)Pr 1/3
6 m(2n —1)+1 x(

X

—

— 11198 — LA 09,200
10 16

Q)Im
v | D

+=0

n+1 - int1) }—1/3
[)1(2;1—1)4-1] }

A 2
x Pr; P X — [0.018393 + 0.020436(n — 1)] (;1—)

n+1

1-m(r+ 1)) - Z/3>
_‘fnz,(nn) - }
6 m2n—1)+1

x Pr;2R x? — {0.12443(71 -1HRA-1)
A 3
+ [0.0058064 + 0.009677 (n — 1)] (E)
(L-n){n+1)7]—
X gnz,(n‘i'l) "—H_ ) '
6 2mn—m+ 1
x Pr7! —0.0034563 [(ZA - Da*™"
3
+ =11 —-2n) x (ﬁ) :|
. o’
a2 n+l S I
6 2mn—m+ 1

x Pr;‘}x3+...
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Equation (70) reduces exactly to equation (3.5) of
Chao [10] for Newtonian wedge flow when n is unity.
However, it differs from equation (42a) in Chen et al.
The difference resulted from the choice of the
parameter, ¢ given in equation (34). Chen chose ¢
= [3(m + 1)}/[2(n + 1)], probably for the reason that
the expression of ¢ could reduce to that of Chao et al.
for the case of Newtonian fluids. The ¢ in Chen et al.
however, is only good for wedge flow and thus cannot
be used for the general geometry since it contains the
wedge parameter n.

The numerical results for Nu, (Re,)™'** 1 from the
two analyses are tabulated in Table 5 for n = 0.520 and
1.60. They agree to within 3% in most cases.

The accuracy is examined again by comparing the
present results with those of Lec et al. and Acrivos et al.
The two analyses in the literature have dealt with
isothermal surface temperatures, thatistosay, X = 1.0
in the present analysis. This isothermal temperature
distribution is of particular importance in this analysis
because the largest error will occur in the series
solution of the energy equation at this thermal
boundary condition. The agreement of the results
between Lee et al. and the present method is very good
(maximum 0.5% difference) for a right-angle wedge
flow as illustrated in Fig. 3. For flow past a flat plate,
the discrepancy between Acrivos et al. and the present
results for the selected values of n = 0.520 and 1.60 are
6.9% at maximum. The difference is probably attrib-
uted to the number of non-zero terms in the series
solution of the present analysis. For this special
geometry, the number of non-zero terms in cquation
(70) reduces to three compared to four non-zero terms

30 T . T
\ PRESENT METHOD

\ —-—LEE 8 AMES [7]
\mm - CHEN & RADULOVIC [9]

05535-0- -

00 L 2 s
02 05 10 15 20

FiG. 3. Comparison of Nu, (Re,)™' "*" for A =05 and
Y 0.

A=
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Table 5. Nu,Re,~! "* 1 for wedge flow n = 0.520, A = 0.5

n = 0520
Pr =100 Pr=10 Pr=1
present present present
XofX method Chen [9] method Chen [9] method Chen 9]
0.9 5.0721 5.0734 2.3158 2.3168 1.0344 1.0366
0.8 4.0111 4.0154 1.8229 1.8225 1.8046 0.8086
0.7 34950 3.5037 1.5830 1.5879 0.6925 0.6984
0.6 3.1689 3.1836 14314 1.4392 0.6215 0.6295
0.5 29366 29593 1.3233 1.3350 0.5708 0.5812
04 2.7592 2.7920 1.2408 1.2574 0.5320 0.5453
0.3 26174 26633 1.1748 1.1976 0.5010 0.5177
0.2 2.5003 2.5631 1.1203 1.1511 04753 0.4962
0.1 24012 24873 1.0742 1.1158 0.4535 0.4800
0.0 23158 24404 1.0344 1.0940 04347 0.4699
n=1.60
0.9 4.8667 4.8662 2.2400 2.2399 1.0189 1.0192
0.8 3.8556 3.8539 1.7703 1.7696 0.7998 0.8000
0.7 3.3638 3.3601 1.5417 1.5402 0.6929 0.6929
0.6 3.0530 3.0466 1.3972 1.3944 0.6252 0.6247
0.5 28316 2.8216 1.2942 1.2898 0.5769 0.5757
0.4 2.6625 26476 1.2156 1.2088 0.5398 0.5377
03 25274 2.5057 1.1527 1.1428 0.5102 0.5067
0.2 24158 2.3846 1.1007 1.0864 0.4856 0.4801
0.1 23214 2.2753 1.0568 1.0355 04638 04561
0.0 22400 21537 1.0189 09789 0.4468 04293

for other geometries. It is certain that the discrepancy
will decrease as more universal functions are carried
out in the calculation.

5.2. Flow over a circular cylinder

Boundary-layer flow over a long horizontal circular
cylinder placed in a power-law fluid flow is considered
next. For the velocity distribution at the outer edge of
boundary layer, the following empirical formula given
by Shah et al {3] is used in this analysis:

U x x\?
— = = C, (=)
7= i) ()
where C, = 092,C, = —0.131, and L is the radius of

the cylinder. Knowing the velocity distribution outside
boundary layer, ¢ becomes

(1)

_nK 3y2n—1
c=—0U"°L™" (Cyt+ G2 de (72)
P )

Then, A, (n + 1)¢dA/dE and (n + 1)? £2 d*A/dE? can
be subsequently obtained as

A=+ 1)(Cy6 + C,8%)2"(C, + 3C,0?)

3
x J (Cyt+ Cyt3)dr
(4]

n+ l)é%% =+ 17 [(C, +3C,6?)

X (Cy 8+ C,8%)7 2 — 2n(Cy + 3C, 8%

X (C1 8+ C;,8%) ™% +6C,8(Cy 6+ C,6%) ~*"¢]

2

L
(n+ 122 =(n+ 1)}()*[6C,6(C,6 + C,8%)1~*

da:?
— 4n(C, + 3C, 6%)(C, 6 + C, 8%+
+6(1 — 81)C33x (Cy + 3C,52)(C,d + C,8%)1 ¢
+8n2(Cy + 3C,8%)3 x (Cy6 + C,5%)76¢

+6C,(8 + &) (Cy 6 + Cr6°%)2

where

6_.’(
__L,

If the local wall friction coefficients, defined in equa-
tion (20), are used, then

L/ (
Le Re”"”’:[ ! ] 4
2" s
n(n+l)J (Cyt+ C,t3)de
0

dA
x (Cy 6 + c253)2"[ o)+ (n + 1)¢ Ef’{(o)

n

”(0)+...].

2

A
+ 4+ l)’c”fl—

@ (73)
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Table 6. L C;Re'-“*V for flow over a circular cylinder

n=0520 n =160

x/L A LC Re! ™™+ A LC Re! "1
0.1 14516 0.2445 0.81591 0.05869
0.2 1.4422 0.3902 0.80826 0.1360
0.4 1.3929 0.6095 0.79029 0.3030
0.6 1.3046 0.7659 0.75854 04561
0.8 1.1709 0.8661 0.70657 0.5680
1.0 09799 09015 0.62321 0.6169
12 0.7118 0.8859 0.48668 0.5825
1.4 03328 0.7901 025137 04571
1.5 0.0844 0.6791 0.067955 0.3462

T T T T T T T

——PRESENT METHOD
—-—LOCAL SIMILARITY SOLUTION[i7]

08+

"1G. 4, Comparison of } C; Re!** Vor flow over a circular
cylinder.

The numerical values of 1/2 C; Re' ** Dare calculated
at the specified streamwise location x and tabulated in
Table 6.

There are several articles dealing with this type of
flow [3, 18]. Recently, Lin et al. [17] presented a
laminar momentum boundary-layer analysis for
power law fluids by using the Merk type of series
expansion method. The numerical results of 1/2 C;
Re' ™"* D are compared with those of Lin et al. in Fig. 4.
They show good agreement in the regions where x/Lis
small but deviate as the flow develops along the body.
This consequence can be predicted because the first
term solution, ie. f, function, does not contain the
perturbation effect even though the two-term velocity
distribution of U, was used in their article.

The rate of heat transfer at the wall, which was
expressed in terms of Nu Re™ "+ can be obtained by
using equation (63). As we have seen in the derivation
of the general expression of Nu Re™':** D) the ex-
pression reduced exactly to that of Jeng et al. for
Newtonian fluids. Since its accuracy has already been
examined and discussed extensively in the case of
Newtonian {luids, no attempt will be made to calculate
Nu Re™'*1 for p = 1.0. The two values of » are

Table 7. Nu Re™! * 1D for flow over a circular cylinder

n=0.520
Pr=100 Pr=10 Pr=1
x/L A xo/L=00 xo/L=05 x,/L=00 x,/L=05 x,/L=00 x,/L=05
0.1 14516 21373 — 0.9548 — 04043 —
0.2 1.4422 2,2763 — 1.0106 — 0.4203 —
04 1.3929 2.3919 — 1.0547 — 0.4308 —
0.6 1.3046 24137 4.3836 1.0621 19779 04318 0.8605
0.8 1.1709 23731 3.2947 1.0451 1.4737 0.4248 0.6257
1.0 09799 2.2651 2.8540 1.0011 1.2750 04112 0.5400
1.2 0.7118 2.1218 2.5358 09470 1.1394 0.3998 0.4896
14 0.3328 1.8976 2.1915 0.8622 1.0291 0.3810 04446
1.5 0.0844 1.7027 1.9401 0.7852 0.8954 0.3593 04104
n = 1.60

0.1 0.8112 3.5667 — 1.6013 — 0.6818 —
0.2 0.8071 3.3756 — 1.5213 — 0.6550 —
04 0.7900 3.1573 — 14278 — 0.6208 —
0.6 0.7584 29820 4.6075 1.3512 21067 0.5908 0.9440
0.8 0.7065 2.8033 34104 1.2724 1.5546 0.5589 0.6908
1.0 0.6232 2.6029 29430 1.1936 1.3417 0.5231 0.5965
1.2 0.4867 23668 2.5839 1.0794 1.1802 0.4803 0.5273
1.4 0.2514 2.0763 22049 09531 1.0211 04311 04627
1.5 0.0680 1.8852 2.0045 0.8717 09271 0.4013 04270

™7 25:2-G
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chosen asn = 0.520and 1.60 representing pseudoplas-
tic fluids and dilatant fluids, respectively. The effect of
the Prandtl number is also examined by using Pr =
1, 10, and 100 for each n value. By using the known
information on the wall velocity gradient, Nu
Re™'*V can be calculated at any streamwise
location for the given value of X. As mentioned
in the previous section, the upper bound of error will
occurat X' = 1 in the series solution of the temperature
field because X varies from zero to one. Thus, the two
different surface temperature distributions are chosen
as xo/L = 0.0 which corresponds to an isothermal and
Xo/L = 0.5 for a step change temperature distribution.
Since the series is semidivergent at the fourth term, the
Euler summation method has been used. The numeri-
cal results are tabulated in Table 7.

6. CONCLUSIONS

Momentum and heat transfer in power-law fluid
flow over arbitrarily shaped 2-dim. or axisymmetrical
bodies with non-isothermal surfaces are theoretically
examined. The Merk-Meksyn scries expansion me-
thod and the generalized coordinate transformation
can transform the partial differential momentum and
energy equations into two sets of infinite-sequence
type ordinary differential equations, respectively. The
solutions to these sets of differential equations can be
obtained as universal functions which are tabulated
and for all geometries. The technique presented in this
analysis provides a general, accurate, and relatively
simple method to analyze the transport phenomena in
faminar boundary layer of power-law fluids. In appli-
cation, the present analysis shows better results than
those of ref. [9] even for wedge flow when predicting
the rate of heat transfer. Although Lin et al [17]
published an analysis of momentum transfer [19], it
can be concluded that the present analysis is a
significant improvement over the existing literature.
Using the results of the present analysis, the heat
transfer problem with any arbitrarily-prescribed sur-
face temperature can be analyzed by the method of
superposition. The authors also believe that the im-
proved results of the velocity and temperature fields
given can significantly improve the prediction of mass
transfer in power law fiuids with hetrogeneous surface
reaction.
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TRANSFERT DE QUANTITE DE MOUVEMENT ET DE CHALEUR DANS DES FLUIDES A
LOI PUISSANCE EN MOUVEMENT AUTOUR DE CORPS BIDIMENSIONNELS OU
AXISYMETRIQUES

Résumé—On étudie théoriquement les transferts de quantité de mouvement et de chaleur dans I'écoulement
de fluides 4 loi puissance autour de corps de forme quelconque bidimensionnelle ou axisymétrique. La
technique de développement en série du type de Merk est utilisée pour I'analyse de quantité de mouvement.
Pour le transfert thermique convectif, une transformation de coordonnées généralisées est employée pour
déterminer le champ de température dans la couche limite laminaire pour le corps avec un changement par
échelon de la température pariétale. Pour les transferts de quantité de mouvement et de chaleur, la solution
deséquations est obtenue par des fonctions universelles qui sont indépendantes de la géométrie. Les solutions
numériques et analytiques des fonctions universelles sont données et appliquées d I'écoulement autour d'un
diédre et autour d'un cylindre circulaire.



Momentum and heat transfer in power-law fluid flow

IMPULS- UND WARMEAUSTAUSCH BEI DER STROMUNG VON “POWER-LAW"
FLUIDEN UBER ZWEIDIMENSIONALE ODER ACHSENSYMMETRISCHE KORPER

Zusammenfassung—Es wird der Impuls- und Warmeaustausch bei der Strémung von “power-
law"—Fluiden uber beliebig gestaltete zwei-dimensionale oder achsensymmetrische Kérper theoretisch
untersucht. Fiir die Impulsberechnung wird die Reihenentwicklung nach Merk verwendet. Beim konvektiven
Wirmeiibergang wird eine verallgemeinerte Koordinatentransformation vorgeschlagen, um das Tempera-
turfeld in der laminaren Grenzschicht des K 8rpers bei stufenweiser Anderung der Temperaturverteilung der
Oberfliche zu bestimmen. Sowoh] beim Impuls- als auch beim Wirmeaustausch erhilt man die Losungen
der Erhaltungsgleichungen als universelle Funktionen, die von der Geometrie unabhingig sind. Die
Lasungen der universellen Funktionen werden in numerischer und geschlossener Form gewonnen. Sie
werden zur Untersuchung der Keilstrémung und der Umstrémung eines Kreiszylinders angewendet.

NEPEHOC UMNVIIbLCA U TEINJA MNMPU OBTEKAHHH MJIOCKHUX U
OCECHMMETPHUYHbLIX TEJ CTENEHHbBIMHU XUAKOCTSAMHU

Annorauus—IIpoBeaeHo TEOPeTHYECKOE HCCIEA0BAHHE MEPEHOCA MMMYNbCA M TEMmI1a MpH O0TeKAHHH
CTENCHHBIMH  AMAKOCTAMH [LTOCKHMX MM OCCCHMMETDHYHBLIX Tel mnpoHiBoibHoil dopmsl. s
AHAIH3A [IEPEHOCA MMNYIbCa HCHOIb3YeTCHs MEpPKOBCKHMIl THn pa3iioxeHHs B paa. B cayvae
KOHBCKTHBHOTO nepeHoca Teria I8 aHaIH3a TeMNEpPaTYPHOro Mo B “1aMHHAPHOM [MOTPAHHYHOM
€710€ Ha Tele NpH CTYNEHYATOM H3IMEHEHHH pacnpeleieHa TeMnepaTypsl NOBEPXHOCTH HCMOIb3yeTCs
MeTo1 00obueHnoro npeodpazosaHusg Kkoopannat. Kak 4715 nepenoca HMNyIbca, Tak M A8 NEPeHOCA
Tei1a HOIIyYeHO PCEWEHHE OCHOBHBIX YypaBHEHHIl B BHIAE YHHBEpCalabHbIX GYHKUMHA, KOTOpblE He
3aBHCAT OT TeomeTpHu 3aiaqn. Halidenb! uHcleHHoe peuleHHe M BbIPAKeHHE B 3aMKHyTOH dopate
A5 ynuBepcaibHblX QYHKUHI, KOTOPBIC 3aTcM HCMOIL3YIOTCS 18 aHaiIM3a oOTeKaHHd KJIHHA H
KO.IbLUEBOrO LHIHHAPA.
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