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Abstract--Momentum and heat transfer in power-law fluid flow over arbitrarily shaped two-dimensional or 
axisymmetrical bodies are examined theoretically. The Merk type of series expansion technique is used for 
the momentum analysis. For convective heat transfer, a generalized coordinate transformation is employed 
to anal)~e the temperature field in a laminar boundary layer for the body with a step change in the surface 
temperature distribution. In both momentum and heat transfer, the solution to the governing equations are 
obtained as universal functions which are independent of the geometry of the problem. The numerical and 
closed-form solution to the universal functions are found and then applied to analyze wedge flow and flow 

over a circular cylinder. 

NOMENCLATURE X, 

a(~), f"(~, 0); 
b, parameter defined in equation (35); Xo, 
c, parameter defined in equation (34); 
C, constant in wedge flow; X, 
Cf, friction coefficient ; Y' 
%, specific heat at constant pressure; Greek symbols 

f dimensionless stream function;  
H (x - Xo) Heaviside function ; c~, 
k, thermal conductMty ; fl' 
K, consistency index for non-Newtonian F(n,x),  

viscosity ; 
L, characteristic length ; fi, 
m ,  f l / ( 2  - fl); .C, 
n, power-law exponent ; q, 
Nit, Nusselt number,  q , L / k ( T , ,  - T~) ;  0, 
Nu~, local Nusselt number,  qwx/k (T,,. - T ~); A, 
Pr, generalized Prandtl  number,  c.', 

pc v U ~ L/k (Re) 2/1" +" l) ; p, 
PG, generalized PrandIl number  for wedge t:,~+ 

flow defined in equation (69); r~, 
q, heat flux ; if, 
r, radius of an axisymmetrical body at the 

point x ; 
Re, generalized Reynolds number,  

pUZ-, ,  , ,  . .~ L / K ;  
Rex, generalized Reynolds number  for wedge 

flow, pU ~-" x"/K ; 
T, temperature ; 
u, velocity component in x direction; 
U,, velocity just  outside boundary  layer; 
U ~, free stream velocity; 
v, velocity component in y direction; 

streamwise coordinate measured along 
surface from forward stagnation point ;  
location in x direction where the wall 
temperature has a discontinuity;  
transformed dimensionless coordinate;  
coordinate normal to surface. 

thermal diffusivity; 
included wedge angle; 
incomplete Gamma function, 
~e t t  "-1 dt;  
x / L  in the flow over a circular cylinder; 

transformed dimensionless coordinate ; 
dimensionless coordinate ; 
dimensionless temperature ; 
wedge variable ; 
dimensionless coordinate ; 
density ; 
shear stress ; 
shear stress at wall; 
stream function. 

I. IN'IRODUCI-ION 

THE rR,X~SPOR]" phenomenon in power-law fluid flow 
has been investigated in several articles recently due to 
the frequent use of this type of fluid in modem 
industry. The power-law model, which the present 
analysis is concerned with, belongs to the group of 
fluids categorized as the time-independent non-  
Newlonian fluids. It can also encompass Newtonian 
fluids by virtue of its expression of the shear stress in 
terms of the shear rate. 
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Despite much effort, the extreme difficulty en- 
countered in the boundary-layer analysis, due to the 
high degree of non-linearity in the momentum equa- 
tion, still invites a general yet simple method for 
analyzing power-law fluids. The initial investigation of 
the external boundary layer in power-law fluid flow 
has been made [1]. A theoretical analysis was pre- 
sented for the laminar flow past an arbitrary 2-dim. 
surface by using the similarity transformation. The 
numerical analysis of the velocity field for flow past a 
horizontal flat plate was given. Using a linear velocity 
profile, as in a similar analysis [2], the partial differen- 
tial energy equation could be transformed to an 
ordinary differential equation. Since then, the simi- 
larity transformation for power-law fluids has been 
further investigated [3-8]. The similar ordinary differ- 
ential equation for the velocity field in a wedge flow has 
been shown [9]. The authors also solved the energy 
equation using a generalized coordinate transfor- 
mation initiated for Newtonian fluids [10]. 

In his paper, Merk [I 1] devised a new technique for 
analyzing the laminar boundary-layer transfer for a 
submerged body in Newtonian fluid flow by using the 
"wedge method" propounded by Meksyn [12]. Merk's 
transformation enabled him to reduce the boundary 
layer equation to the ordinary differential equation of 
identical form to one obtained earlier [13]. The main 
diffei'ence between them, however, lies in the solution 
technique for the equation, which was explained well 
in ref. [14]. The accuracy of Merk's expansion method 
drew the attention of some authors [15, 16]. Recently, 
Lin eta/.  [17] examined the velocity field for power- 
law fluids using the Merk-type series expansion. Only 
the similarity solution, i.e. the fo function for the 
momentum transfer was presented. No attempt has 
been made to obtain the remaining universal functions 
and heat transfer functions. 

In the present analysis, the Merk series expansion 
method is employed for the momentum analysis. Then 
the temperature field and the rate of heat transfer are 
investigated for the same problem with a step in the 
surface temperature distribution by employing the 
generalized coordinate transformation. 

U= 

T. 

(Surface lemperoture,step chonged 

y,v ~ ~ X , U  

Veloclt; boundary layer 

Forword s~ognotion point 

FIG. 1. Physical model and coordinate system. 

2. F O R M U L A T I O N  O F  G O V E R N I N G  E Q U A T I O N  

The assumptions used for the boundary-layer ana- 
lysis of power-law fluid flow may be stated as follows: 

(a) The fluid is incompressible and all physical 
quantities are constant. 

(b) The boundary layer is steady laminar flow, and 
the flow outside the boundary layer is a potential flow. 

(c) There are no external body forces. 
(d) The Mach number is small, and heat conduction 

in the x-direction is neglected. A physical model with 
the coordinate system is shown in Fig. 1. 

Under the above assumptions, the boundary layer 
equations can be expressed in general form as follows: 

Contimdty equation 

O(r.) 8(rv) 
- - +  = o. (1)  

Ox Oy 

Momentum equatiotl 

~1, tCtt dU e 1~). 
n ~ -  + ' - -  = Ue ~ + (r~,.). 

OX ~ '  j �9 

with the boundary conditions 

(2) 

, = v = 0  at y = 0 ,  

u = U ~  a t x = 0 ,  y > 0 ,  

u = U ,  ( x )  a t  .v ---, 

(3) 

where Ue (x) is the velocity 
outer edge of the boundary 
model, the shear stress can 

of the mainstream at the 
layer. For the power-law 
be expressed as 

r~. = K \ O y j  (4)  

where n is called power-law exponent which is a non- 
negative dimensionless index parameter, and K is a 
consistency index for non-Newtonian viscosity which 
is also a non-negative but dimensional quantity. 

Energy equation. 

dT dT d02T 
u - -  + v - -  = a (5)  

dx By 02 ,2 

with the thermal boundary conditions 

T(x,O) = T~ + (Tw - T ~ ) H ( x  - Xo), 

T(0, y > 0) = T ~, (6) 

T(x, ~ )  = T~ 

where a is the thermal diffusivity and H (x - Xo) is the 
Heaviside function. 
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3. S O L U T I O N  M E T i l O D  O F  T I l E  M O M E N T U M  

E Q U A T I O N S  

In order to satisfy the continuity equation, the 
'stream function ~,(x, y) is introduced such that 

u = - ~ - ,  v . . . .  . (7) 
r ok" r Ox 

The x - y coordinate system is transformed into a 
dimensionless system by adopting new dimensionless 
variables 

p \ u j  

(8) 

U = U ~ L  L" 

The stream function also can be nondimensionalized 
by defining 

~k = [(n + 1)4] ' ~  U~ L ' f (4 ,q ) .  (9) 

f ' (4 ,  ~ )  = 1. (12) 

The wedge parameter, A, appearing in equation (11) is 
a function of 4, i.e. x only, and can be expressed as 

(n + l)4dU~ 
A - -  - -  - -  

U, d4 

(n+l )~  p (U . '~  t-2" (L)"+ tdU~ - -  ~ ] 2 - n  ~.n+ l 

(13) 

By employing the Merk-Meksyn procedure, f(4, q, n) 
can be expanded in a series form as 

f(e, q, n) =fo  (A, q, n) + (n + 1 ~ 4 dAft  (A, U, I1) 
" " d~ 

d2A 
+ (n + 1)24'-~Tf2 (A,,I,n) 

+ ~(n + dA -12 
I) 4 : : : / f ~  (A,,l,n) + ... (14) 

L" 

By using new variables, the velocity components in the 
bonndary layer can be expressed as 

It = U r  "7" ,  
cq 

" =  - p r  \b-71 

aT 
x [(11 + 1){] -',v'+~} f +  (,i + 1)40-- ~ 

[,,,,,+,,,dr 
+ + -  1 q . (10) 

r d4 

The momentum equation is transformed into 

o(f' , f)  
f " ' ( f " ) " - '  + f f "  + A(I _f ,2)  = (,, + 1)~ c3(4,,fi 

(11) 

where the primes stand for differentiation with respect 
to q and 

?(r q) 

is the Jacobian. 
For 2-dim. flow, r is simply replaced by L in all the 

above equations. The corresponding boundary con- 
ditions become 

f(r = f '  (4,0) = 0, 

Substituting f from equation (14) into equation (11) 
and arranging the terms which are free of (dA/d4) ,  
and then terms with 01 + 1) 4 (dA/d4) ,  
(n + l)242(d2A/dr and [(n + 1)(dA/d~)] 2 .. . .  re- 
spectively, the following set of sequential differential 
e q u a t i o n s  is o b t a i n e d :  

f ~ '  + f o ( ] ' ~ )  2-" + A ( I  _ f ~ 2 ) ( l - ~ ) t - .  = 0 (15)  

f'l" + (2 --  n ) f  o ( f ; ) t - n f ~  

+ A(1 -- n)(l --f'o")(f'~)-"f'; 

-- (2A + n + 1) (f~)t-"f~f ' t  + (n + 2) 

-" e(f~'f~ (16) 
(]-~)2-,,f, = (/-a)t e(A,,1) ' 

f~ '  + (2 - n)fo ff~)t-,,f~ 

+ A(1 n)(1 ..',2,tr.~-.,,,'. - -  - - J o  I V O ]  J 2  

- 2(A + n + 1) (f~)t-"f~f~, + (2n + 3) 

(f'~)z-" f z  = (f'~)t-"[f'of'~ - f ~ f , ] ,  (17) 

f ] '  + (2 - n)(J'~} t - " fo f3  

+ A(I - n)(1 - f 'o: ' )( f '~)-"f '~ - 2(A 

+ n + l ) ( f a ) t - " f ; f ;  + (2n + 3)(f;)2-"f3 

= 01 + 2 ) ( , ,  - 2 ) ( f ~ )  t - " f d " ;  

+ (A + ,, + 1 ) ( f D ' - " f ?  
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[! n - 1) (n - 2)  
+ 2 

- A(n  - 1 )2] (1  _ f ~ 2 ) ( f ~ ) - l l  +~) (f';)~ 

+ (1 - n)(2A + n + l)OC~)-"f'[f'lf 'o 

+ (I . . . . . .  . .,, ~.(f;,fo) - nlbroj J~ 

+ (f;) ' -oo(f; ' f ' )  v Or;) '-~e'Or''f~ 
~(A,II) g(A,t/) 

(18) 

with the corresponding boundary conditions 

fo(A,0,n) = f~ (A ,0 ,n )  = 0; f~(A,  ~ ,n )  = 1, 

f ,  (A,0,n) =f i t  (A,0,n) = f ' l  (A, ~ ,n )  = 0, 

f z  (A, 0, n) = f ~  (A, 0, n) = f ~  (A, m, n) = 0, 

fa (A, O, n) = f ;  (A, O, n) = f ;  (A, ~ ,  n) = O. 

With any given value of A, which is fixed at any 
streamwise location x, the above equations can be 
regarded as ordinary differential equations and the 
solutions to these equations become universal. 

There may not be any analytic solutions to the 
above equations, and thus as the solution method one 
must resort to numerical analysis. The classical fourth- 
order Runge-Kutta method was employed with in- 
tegrating step-size control. Since the method com- 
monly used in the initial-value problem was adopted in 
this asymptotic type of boundary-value problem, the 
assumed initial-value off ' ;  (01 should be provided and 
the resulting solution must satisfy the remaining 
boundary conditions, i.e. its first derivative and an 
additional condition which is the second derivative at 
the outer edge of the boundary layer. The additional 
boundary condition f'~ (m) is required due to the 
nature of the asymptotes in the solution. In the 
practical sense, the initial value o f f i '  (0) cannot be 
known exactly so that an iteration procedure must be 
used. The Newton-Raphson technique was used for 
this purpose. A difficulty encountered in this numerical 
integration method is a singularity at infinity in 
equation (15) due to the third term of the equation for 
dilatant fluids when n is between 1.0 and 2.0. This type 
of singularity, however, can be removed if the limiting 
process is adopted. The L'Hospital Rule was applied 
for this process with control of the integrating step size. 
When n is greater than 2, equation (15) represents the 
two point boundary-value problem which means the 
~1~ being finite, as pointed out by Acrivos et al. [1]. 
This phenomenon is attributed to the power-law 
exponent, n, and hence is not encountered in either 
Newtonian fluids or pseudoplastic fluids. 

To obtain numerical results, several physical models 
of fluids are considered. 23.3~ Illinois yellow clay in 
water (n = 0.229), 0.67~o CMC in water (n = 0.520), 
and 10~o napalm in kerosene (n = 0.7161 for pseudo- 

plastic fluids. Newtonian fluid (n = 1.01 and ethylene 
oxide in sodium chloride solution 01 = 1.2, 1.6, 2.0) for 
dilatant fluids are also used. The choice of the upper 
limit of n was based on the fact that most power-taw 
fluids have tile value of n less than two. 

A general computer program was developed for the 
first three equations. Although the velocity profile can 
be obtained from the computer program, the main 
interest is in the velocity gradients at the wall, in order 
to obtain the drag on the body and the rate of heat 
transfer. For this purpose, the numerical results of 

f~  (0),f'~ (01, andf~ (0) for the given values of n and A 
are tabulated in Table 1. They are compared with 
those of Chao [14] when n is unity. It is found that the 
values off~ (01 in both analyses agree to 11 digits and 
those off '[  (01 andf~  (01 differ by 0.25~o at most. The 
numerical results of f~(0)  for non-Newtonian fluids 
are compared with those of refs. [8, 9]. The maximum 
discrepancy between them is 4 ~  and 0.2~o, 
respectively. 

Once the velocity functions are known, the local 
friction coefficient can be readily calculated. Since the 
shear stress was defined in equation (4), the shear stress 
at the wall is given by 

Zw = K !k~Y / ~.=o 

F ' y 

I f  dA x ; ( 0 ) + 0 1  + l)~-~--f ' [  (01 

2 d2A , 0 ]" .  
+ ( n +  1)2~ ~ T f ' ; (  ) + " "  

J 
(19) 

Defining the local friction coefficient by Cf = 
rw/(pU ~/2) then 

F 1 ] l , t"+lJ:U, '~2" 1 / r V F , ,  
cr-- j Ifo(01 

dA , z z d2A ,, ~" 
+ (n + 1) r -d-~f'~ (0) + (,1 + 1 ) r ~ r  (0) + . .  

_1 
(20) 

where 

Re - p U 2 -n L~/K 

is a generalized Reynolds number. 

4. SOLUTION OF TIlE ENERGY EQUATION 

In order to solve the heat transfer problem with a 
step change in the surface temperature distribution, 
further coordinate transformation for the energy equa- 
tion is needed. For this purpose the new dimensionless 
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Table  1. N u m e r i c a l  resul ts  o f f i ' ( 0 }  for p o w e r - l a w  fluids 

n A f ~ ( O )  f '~(O) x I0  f~(O} x 10 2 

2.68341 1.9568071 - 0,1502860 0.0886065 
2.0 1.5565997 -- 0.2028859 0.1474157 

1.5 1.2485316 - 0.2685225 0.2350089 
1.0 0.9221991 -- 0.3874294 0.4259752 

0.75 0.7494606 -- 0.4903864 0.6180423 
0.229 0.50 0.5676960 - 0.6565673 0,9682217 

0,25 0.3731422 - 0.9600644 1.7011382 

0.00 0.1585939 - 1.6278791 3.5851544 

- 0.10 0.0646986 - 2.1474721 5.2446473 
- 0.15 0.0160405 - 2,6003656 6.7798058 

1.46154 1.36246393 - 0.21494049 0.17050786 

1.25 1.23990722 - 0.25247219 0.21780692 
1.00 1.08656532 - 0.31420028 0.30224534 

0.75 0.92140437 - 0.40784471 0.44311522 
0.520 0.50 0.73995249 - 0.56329145 0.70236620 

0.25 0.53374449 - 0.86088559 1.25704889 
0.00 0.28193462 - 1.61881113 2.84021463 

- 0.10 0.15386494 - 2.43663056 4.63630326 
- 0.15 0.07461074 - 3.45034669 6.81761648 

1.19832 1.27454773 - 0.22412658 0.18268289 
1.00 1.16036533 - 0.26933531 0.23835769 

0.75 1.00414043 - 0.35337571 0.35052194 
0.50 0.82904080 - 0.49456703 0.55770961 

0.716 0.25 0.62451676 - 0.77061857 1.00621228 

0.00 0.36313757 - 1.51689628 2.35484749 

- 0.10 0.22193012 - 2.41167773 4.06219319 
- 0.15 0.12961836 - 3.62337789 6.37719317 

1.0 1.232587657 - 0.21495486 0.1701345 
0.75 1.090441562 - 0.28526627 0.2509169 
0.50 0.927680040 - 0.40504497 0.4009941 

1.0 0.25 0.731940849 -- 0.64497584 0.7311176 

0.0 0.469599988 - 1.33284826 1.7790514 
- 0.I 0.319269760 -- 2.22364220 3.2220740 

- 0.15 0.216361406 - 3.47115850 5.2949057 

1.0 1.26641921 -- 0.18467854 0.13594487 

0.91667 1.22409277 - 0.20213430 0.15370956 
0.75 1.13386852 - 0.24654164 0.20076631 

1.2 0.50 0.98034168 - 0.35276925 0.32166537 
0.25 0.79280349 - 0.56842709 0.59013672 

0.0 0.53506307 - 1.20450065 1.46453568 
- 0.10 0.38295155 - 2.05212958 2.70380187 

- 0.15 0.27664817 -- 3.23918625 4.48784407 

1.0 1.3074729 - 0.1389691 0.0896980 
0.8125 1.2225340 - 0.1728273 0.1196185 

0.75 1.1920803 - 0.1872365 0.1328106 
1.6 0.50 1.0560872 - 0.2712033 0.2138341 

0.25 0.8860135 -- 0.4453047 0.3966827 
0.0 0.6433860 -- 0.9798961 1.0146403 

- 0 . I0  0.4940646 -- 1.7179589 1.9224022 
- 0.15 0.3868320 -- 2.7473601 3.2270801 

1.0 1.326903 -- 0.107393 0.061742 
0.75 1.225727 -- 0.145714 0.091659 

0.60 1.156237 -- 0.180923 O. 120725 

2.0 0.50 1.104986 -- 0.213007 0.148203 
0.25 0.951416 - 0.354769 0,277481 
0.0 0.726468 - 0.801947 0.725504 

- 0.10 0.584034 -- 1.432707 1.398180 
- 0.15 0,479965 -- 2.308608 2.362014 
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variables, X, (, and the dimensionless temperature 0 
are defined as 

u 
= b ( ~ ) X ,  (21) 

T-T~c 
0 ( x ,  r  - - -  

T w - T~ 

where r is defined by 

z a ,  

a2 (r  ?"12 I .=0 

as (~) = -- Aa I - , ,  

a.~ (~) = (1 - n)A2a ~-2", 

a 5 (~) = (n + l ) ~ a ' a  2-" - (1 - n)(l  - 2n)A3a ~-3" 

+ (2A - 1) a s-", 

a6(~) = (1 - - n ) ( 2 n -  l ) ( 3 n -  1)A4a t-'*" 

r = - -  U~ -2 L-"  - - .  
\b-Sj L 

(22) 

The coordinate transformation ofequation (21)was 
first proposed by Chao and Cheema [10] for con- 
vective heat transfer with a non-isothermal surface for 
wedge flow and later generalized by Jeng et al. [16]. 

On substituting u and v expressed by equation (10) 
into equation (5), the transformed energy equation 
becomes 

~,20 ( [ (nq-  l)~]2An+l)[" ~ ]  

7;r,-r  is+(,,+ 
+ 

c[(,1 + 1 ) r  ~,("§ (1 - X 3) 

3~tb2 ~ X 

[(n + l)r ,2 ~f ) 
- a T x  

{ U ,  ~2"-2,,K {U~r '~" - '  ~0 c[(,, + 1)~] 2''"+1' 

x ~--~ / p ~,--~- ] eq O-X = 0 (23) 

with the equivalent boundary conditions in dimen- 
sionless form 

O(X,O) = 1, 

0 (X, ~ )  = 0. (24) 

The dimensionless stream funetionfis  now expanded 
in a power series as 

ar~ 

f ( ~ , q ) =  ~ am(~) qm-. (25) 
m=2 DI! 

The coefficient appearing in the above equation can be 
determined by substituting f from equation (25) into 
equation (11) and rearranging in terms of like powers 
of q 

+ [ 4 A ( n -  1 ) ( 2 A -  1 ) - 6 A ( 6 A - 4 )  

- 2(n + 1 )~A' ]a  3-2" 

+ 6 ( n -  1)(n + 1 ) r  2-2" (26) 

where the primes stand for differentiation with respect 
to ~. The unknown function a is determined by using 
the value offi '  (0) obtained in Section 3. Now, using the 
new variables ( and X, f c a n  be written as 

f -  a ~  2~{~lT X 2 + a3(~)~ 3 X 3 a4(~_)~ 4 X 4 
Z ' 0 " .  3!b 3 + 4!b 4 

~ X  5 -F fl6(~)~6 " 6 + ~ 2 ~  + . . .  (27) 

The solution to equation (23)is then expanded in series 
form 

0 (~, c, x )  = ~ ok (r ~) A "k (28) 
k = O  

with 

0oGO) = 1 ;0~ (~,o) = G ( G o )  = G(~ ,o )  . . . . .  o, 

OoG o~) = o~ (~i ~ )  = G( r  ~ )  = 03(r -/A . . . . .  o. 
(29) 

Thus the boundary conditions in equation (24) are 
satisfied. By substituting f, (Sf/Stl) , (Sf/O~), and 0 from 
equations (27) and (28) into equation (23) and equat- 
ing the coefficients of like powers of X with a proper 
choice ofc and b (~), the following sequence of second- 
order, linear differential equations can be obtained: 

020o ~0o 
~(2 + 3(2 - ~  = O, (30) 

0201 t?Ol 3 a3 (3~0o (31) 
~(2 + 3(2 ~ - 3( 01 2 aEb 0,~-' 

0202 ar2~02 6( 02 a~ ~4g-0o - - + - %  "W7-~ -- = 
~(2 Cg 2a 2 b 2 t?( 

3a3 a~01 . 3a3 -2 
- 2a2b ( ~,~ -t- 2~-~2b ~ 01 (32) 
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~203 3~ 2 g03 [ a 5 .~ 9 
0~--~ + " i ~ - -  9~03 = -8a -~ -~  ~ - 2(n + l )c  

9~db(2  9 ~ a ~ 2 +  3~2] 
• C.' + -~ ~ 2c,,~ 

x g0~ a4 ( ,g0o  
?~ 2a2b 2 ~ 

3a3 ~3?02 (14 (3 ~ - +  01 
2a2b cg 2a2 bz " 

p a5 
8a2 b3' 

3 3~ db 
Q = 3  l - 2 ( n + l ) c - t  cbd~ 

Therefore, the equations (31)-(33) become 

00'[ + 3(2 00'( - 3(00 t = (30 ; ,  

U 
0-L, + 3~001. ,  - 6~G.t  = T 0 ; ,  

0-~.2 + 3~2 001.2 - 6fiG.2 = . ~ 0 ; ,  

3~a2 ] .  
2ca2 

(41) 

(42) 

(43) 

(44) 

3a3 ~2 0 
+ a2  ~ t~ 2 

where 

C - -  m 
2(n + 1) 

and 

{ 1 2'"+'~ ( R e r  ' t - " '  '"~'~ I [n(n + )] 
b(r ~ T + 

\ u . , ]  

The solt, tion to equation (30) is 

00;., + 3(20-;.t - 9(0-3.t = (50-2.1 - 2(2002.1, (45) 

(33) 0-;. 2 -.I- 3( 2 003.2 -- 9(0--3.2 

= (4  0-, I _ (5  0-1 + (30- 2 .2 - -  2 (  2 0-2.2 (46) 

00~.3 + 3(2 00~.a - 9(0-3.3 = (5 0~, (47) 

00;., + 3ff2 00;..* - 9(03.a = ~20;,  (48) 
(34) 

with the boundary conditions 

O-dO) = 0,(~'~) = 02.1(0) = 6 , . ,  (~ . )  

= 0, .2(0)  = G . ,  ( ~ )  

= 03., CO) = 03.,  (~, )  

= 0-3.2(0) = 03.2(0z) = G . ~ ( o )  

(35) = 003.3(oz) = 003..~(0) = 0-3 .,(oz) = 0. (49) 

The solutions to equations (42), (47) and (48) are of the 
closed form 

thus, 

F( l /3 , (3)  
0 o = 1 (36) 

r O D )  

then 

( 
(50) 

0 ; ( 0 )  = 1.1198. (37) 

In order to obtain each solution to the above equations 
in terms of universal functions, 0,'s are rewritten as 

01 = M 0,, (38) 

02 = ,'~t 2 002., + X 02.2, (39) 

03 = M300L, + MN00a.2 + P003.a + Q 003..t, (40) and 

I 
00',(0) = ~ ,  (51) 

9F(1/3) ( + (4 e , (52) 

0~ 4 1 . _c3 
' 6F (1 /3 )  ~e (53) 

where 

M 3% 
2a2b ' 

N - a4 
2a2b 2' 

2 
0";'3(0) = 27F (1/3)'  (54) 

1 
00;..,(0) - 6F (1/3)" (55) 

There seems to be no closed form solution to the 
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equations (43)-(46). ttence the equations have been 
integrated numerically. Since equations (43) and (44) 
arc of identical form to equations (3.39) and (3.40) in 
ref. [15], respectively, the numerical tabulation given 
there can be used for comparison. The numerical 
results of 0-~.~ and 0-3. 2 are tabulated in Table 2. The 
first derivatives of the above numerical solutions at 

= 0  are 

0-~.~(0) = 0.81748 x 10 -z, (56) 

0-~.z(0) = 0.40872 x 10-l, (57) 

6~.t(0 ) = 0.17205 x 10 -z, (58) 

6~.2(0) = 0.12904 x I0 -1. (59) 

It. W. Klst, D. R. JE.xo and K. J. DEWITT 

then 

I- 1 I l ' ~ ' +  u U, 

i-(,,~ + ,,)~ ,.+,, (~q,,-.,,,.+,,(,.,~ y,.-,, x [ ~i;;+i5 k - ; T /  k ~ , /  

- aO x ~ ) "  tPra] t /3X- t ( - -~ ) r  (61) 

where 

( ~ o )  1 , , [  ,, 
- ~  :=o= 1"1198- Td~L6(,,+ 1) 

_ [9(0.0081748 ) (1 - ,1) 
L4 2 

u(Re~)U-.,, .+,,(U" )2(.-1, [r \~"-" 1 -'/3 x (,,, +,,),,,.+ k ~ . ,  k~.~ • ,~r] X 

[ . .  " . . I , ,~+,,)2., .+,,  x - ~rJ x~ 
LOt,, + 1) !,-~-z ,, kv~./ 

-{0"062214[ 2(n-1)(2A-l)-(n+l)r +2(n2-1)!d~ -] 

+ [.2~ (0.0017205) 3(1 - n) ] @ ) 3  6(n -F 1) x (0.012904) (n 2 + n) -z'~"+l) 
4 a 

k -~-~ }(Re~ "-"'~"+1~ ~-~](Uc ~zu-., ( L ) t P r _ l _ - .  {(0.02765) 

I(2A 1)a z-" (1 n)(l 2n) ( ~ )  ~ ] . . . .  + (11 + 1)~at-"a ' 

60, + 1)0,2 +,,)-z,,,,+,, (Re~'~ '"-'' ' '~+'' (U~'~ 2''-'1 
,-, kS; - , /  \ u . /  

( L ) ' - " p r - ' } X 3  +.. .  (62) 

The dinaensionless temperature in boundary layer is, 
thcrcfore, written as 

0(~,r = 00 + MO, X + (MZ0-z., + NO2.~)X ~ 

+ (M30-3., + AlXff3.2 + P0-3.3 + Q 0-3.4)" 
X s + ... (60) 

The local heat flux at the wall is given by 

q . = - k  
. ) - = 0  ~ 

Equation (62) is identical to that of Jeng et al. [16] 
when ,  is unity. 

If the Nusselt number is defined by Nu = 
q~,L/k(Tw - T~), then 

Nu Re- '"+ " = k~e~ l k-O--~,] 

r(,,~ +,,)T,,,+,, (~e~' f - ' , . , - ,  
x L ~ J  ' , "  / 

. Ur "~2'"- " (r "~'- I ], f3 x k ~  / e~. x - '  

~0 
x ( -  ~-~);= ~ . (63) 
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Table  2. Numer ica l  resul ts  of  0-3.~ and  0-j.2 funct ions  
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~3.1 ( 0  ~ . l  (~)  0-3.2(r ~ . . ,  (~)  

0.0 0.0 00 0.172047 - 02 0.0 130 0.129035 - 01 
0.2 0.345340 - 03 0.174472 - 02 0.259037 - 02 0.130935 - 01 
0.4 0.706001 - 03 0.188811 - 02 0.530487 - 02 0.142778 - 01 
0.6 0.111202 - 02 0.220069 - 02 0.839461 - 02 0_167885 - 01 
0.8 0.159489 - 02 0.263162 - 02 0.119814 - 01 0.185204 - 01 
1.0 0.214531 - 02 0.273829 - 02 0.152926 - 01 0_125951 - 01 
1.2 0.258697 - 02 0.130933 - 02 0.161311 - 01 - 0.598489 - 02 
1.4 0.252623 - 02 - 0.212250 - 02 0.127948 - 01 - 0.257521 - 01 
1.6 0.178532 - 02 - 0.483260 - 02 0.704435 - 02 - 0.282275 - 01 
1.8 0.833569 - 03 - 0.413904 - 02 0.242826 - 02 - 0.158842 - 01 
2.0 0.240189 - 03 - 0.180663 - 02 0.561590 - 03 - 0.494263 - 02 
2.2 0.404829 - 04 - 0.417781 - 02 0.736835 - 04 - 0.850734 - 03 
2.4 0.383711 - 05 - 0.507224 - 04 0.546178 - 05 - 0.792545 - 04 
2.6 0.237521 - 06 - 0.310993 - 05 0.218863 - 06 - 0.387334 - 05 

t is  n o t e d  t h a t  the  t e r m  Re~./n a p p e a r i n g  in  t he  a b o v e  

q u a t i o n  is  e q u i v a l e n t  to  t h e  e x p r e s s i o n  

vh ich  is  d i m e n s i o n l e s s  a n d  i n d e p e n d e n t  o f  a n y  p h y s i -  

a l  u n i t s .  

5. APPLICATION OF ANALYSIS 

T h e  g e n e r a l  e x p r e s s i o n  o f  m o m e n t u m  a n d  h e a t  

r a n s f e r  h a v e  b e e n  d e r i v e d  fo r  a r b i t r a r i l y  s h a p e d  2 - d i m .  

Dr a x i s y m m e t r i c  b o d i e s  w i t h  s t e p - c h a n g e d  n o n -  

s o t h e r m a l  s u r f a c e s  in  p o w e r - l a w  f l u i d  f low.  T h e  

. p p l i c a b i l i t y  o f  t h i s  a n a l y s i s  is  e x a m i n e d  b y  a n a l y z i n g  

e r t a i n  c a s e s  of  g e o m e t r y  w i t h  a s t e p - c h a n g e  in  t he  

u r f a c e  t e m p e r a t u r e  ( i n c l u d i n g  t he  i s o t h e r m a l  s u r f a c e )  

ly r e g a r d i n g  i t  a s  a n  e x t r e m u m  c a s e  o f  t he  n o n -  

s o t h e r m a l  b o u n d a r y  c o n d i t i o n .  T h e  f l o w  g e o m e t r i e s  

s e l e c t e d  a r e  w e d g e  f l o w  a n d  f l o w  o v e r  a c i r c u l a r  

c y l i n d e r .  E x a m p l e s  for  a x i s y m m e t r i c a l  b o d i e s  wi l l  n o t  

b e  p r e s e n t e d  b u t  t h e  a n a l y s i s  w o u l d  b e  s t r a i g h t f o r w a r d  

u s i n g  t h e  p r o c e d u r e  g i v e n  in  t h i s  a n a l y s i s .  

5.1. W e d g e  f l o w  
F o r  t he  c a s e  o f  a w e d g e  f low,  the  v e l o c i t y  a t  t he  o u t e r  

e d g e  o f  b o u n d a r y  is  g i v e n  b y  U e = C x "  p r o v i d e d  m = 

i l l (2 - fl). In  t h e  a b o v e  e x p r e s s i o n ,  C is a c o n s t a n t  a n d  

fl is  a n  i n c l u d e d  w e d g e  a n g l e  d i v i d e d  b y  n. A c c o r d i n g  t o  

t h e  t r a n s f o r m a t i o n  in  S e c t i o n  3, 

c2n-- 1 t2K 

m ( 2 n - 1 ) + l  p 
( U  ~ L )  - (n+ 1)x,,(2, ,-  z)+ 1, 

(64)  

m (,1 + 1) 
A - (65)  

m (2n - 1) + 1 

T h e r e f o r e  A b e c o m e s  c o n s t a n t .  T h i s  p h e n o m e n o n  

m a k e s  t he  se t  o f  e q u a t i o n s  in  t he  s e r i e s  r e d u c e  t o  a 

Table  3. ~Cf(Re;,) t '~"+ 1~ for wedge flow 

A n = 0.229 A n = 0.520 A n = 0.716 

2.68341 1.276936 1.46154 1.290100 1.19832 1.268198 
1.50 1.212229 1.25 1.225968 - -  - -  
1.00 1.161385 1.00 1.141980 1.00 1.152096 
0.75 1.124061 0.75 1.045738 0.75 1.004359 
0.50 1.071923 0.50 0.930896 0.50 0.848719 
0.25 0.991041 0.25 0.783684 0.25 0.673092 
0.00 0.830733 0.00 0.561079 0.00 0.444320 

- -  0.10 0.682246 - 0.10 0.409875 - 0.10 0.309080 
- 0.15 0.497885 - 0.15 0.281444 - 0.15 0.209237 
- 0.164 0.302594 - 0.18 0.079187 - 0.188 0.045900 

A n = 1 . 2  A n = 1 . 6  A n = 2 . 0  

0.91667 1.210039 0.8125 1.173542 0.75 1.14655 
0.75 0.975388 0.75 1.023729 0.60 0.74580 
0.50 0.708620 0.50 0.636713 0.50 0.58699 
0.25 0.489868 0.25 0.396683 0.25 0.33210 
0.00 0.278048 0.00 0.205388 0.00 0.15983 

- 0.10 0.179967 - 0.10 0.128046 - 0.10 0.09694 
- 0.15 0.119881 - 0.15 0.084551 - 0.15 0.06356 
- 0.20 0.026202 - 0.20 0.025249 - 0.20 0.02402 
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Table 4. Numerical results of Cf (Re,) ~'~"+ '} for flow past a flat plate 

n 0.229 0.520 0.716 1.0 1.2 1.6 2.0 

Acrivos et al [1] 0.840 0.562 0.445 0.332 0.275 0.205 0.161 
Present analysis 0.832 0.561 0.444 0.332 0.278 0.205 0.160 

single equation, namely thefo equation which repre- 
sents the local similarity. It is interesting to note that 
for certain geometries the values of A become constant 
for all values ofn. Some values of A are for example, A 
= 0 for a fiat plate and A = 1/2 for a right angle wedge. 
The laminar boundary layer for these cases have been 
examined, as mentioned in the Introduction. 

Following the definition of equation (20), the local 
friction coefficient can be written as 

[ p  U ~  I "("+ , ' ( "+ 

[.m(2t~ - I)  + 1-t'"("+ 1) 
= 2 [  ,T+E j (66) 

If a flat plate with a length of L in Newtonian flow is 
considered, equation (66) becomes 

Cr Re'/2 = ~22f,, (0). 

For both sides of the plate, Cf Re ~ = 1.3282 which 
agrees with the solution obtained by the Blasius series. 

For wedge flow especially, another expression for 
defining the local friction coefficient is frequently used. 
This is given by Cf = ~w/pU~/2. Then, 

OE 

(..) 
--k~ 0:~ 

0,~ 

, l 

O0 | i i 

O0 0 5  I 0  1.5 2_0 

FIG. 2. Comparison of ~ Cr (Re~) I "("+ 1) for flow over a right 
angle wedge. 

~Cf(Re,)  1 ' ( "+ ' )=  {[01 + 1) 

- A ( 2 , ,  - 1 ) ] . } - o , .  + ,) Dr,, ( o ) ] .  

(67) 

where 

P n .  2 - n  K Re x = ~-x  u e = C2-"x ' (2 - , )  +.. (68) 

The numerical results of 1/2 C r (Re.,) t '("+ ') are pre- 
sented in Table 3 for selected n's and A's. The 
numerical results for a right-angle wedge flow are 
compared with those of Lee et al. in Fig. 2. The results 
agree within 0.5~. For further examination of the 
accuracy, the present results for flow past a fiat plate 
are compared with those of Acrivos et aL [1] and are 
tabulated in Table 4. It is noted that the values from 
Acrivos et aL were read from Fig. 4 in their paper. Thus 
they may not present the exact values which the 
authors originally presented. Generally, the agreement 
between these two analyses can be regarded as fairly 
good. 

In addition to the drag coefficient, another impor- 
tant flow characteristic is the separation of flow. The 
separation point of wedge flow for various values of n 
can be found by determining the value of A from 
equation (15). The A is denoted by As which makes the 
velocity and its derivatives at wall identically vanish. 
The A, are - 0.166, - 0.182, - 0.190, - 0.199, 
- 0.204, - 0.212 and - 0.218 for the corresponding n 
being equal to 0.229, 0.520, 0.716, 1.0, 1.2, 1.6 and 2.0, 
respectively. When n is unity, A is equal to - 0.199 
which agrees with the separation point for Newtonian 
fluid obtained by Blasius series expansion. However, 
prediction of the separation point for power-law fluid 
flow over an arbitrary body by the present method 
may not be possible. 

For the rate of heat transfer at the wall in wedge 
flow, the Nusselt number defined in equation (62) will 
be slightly modified for the direct comparison of the 
present results with those reported in literature. It is 
not difficult to show that the term 

k-~l Re ~ "~ (" - t ' /(" + t ' ( U" "~ 2 (" - ' , ] ( L ) " ' a 

in the general expression becomes 

[, '- ,,-,, 
,,(2n 1 ) + l J  k V /  
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( C  3 X 3 m -  1 ) ( n -  11 (n+ 1) 

)r wedge flow. Now, let us define the generalized 
'randtl number for wedge flow as 

pc,(k_ y .("+~' 
V r ~ = - ~ - I ~ )  (C3 Xo3~"-I) '"- I''("+ I' (69) 

"he local Nusselt number, Nu.~, is then defined by 

Nu~ = q~ x/k (T,, - T~) 

?0 
= C,,,(Re~)' ;("+ l'(Pr~)l/3 X -  l ( -  -~ )~=o (70) 

there 

- \x/ j 

b={~ 11=̀"+ ''rLm (2ntJ-+l- I ) + I ]n -""("+ ~'Pr~} '/a' 

1 . , , 9 8 _  = - -  - -  112 ,(n+ 11 

=o lOa" 

x Lm( 2 n -  l ) +  1 

• Pr: '13 X -[0.018393 + 0.020436(1, - 1)] ( ~ 1 2  

{6 n2.~.+,1F n+l - - :z/3 
Lm(2n - 1)+ 1]'  ,,),,,+1,} 

x p r ~ 2 ~ X  2 - {0.12443(11- 1)(2A- 1) 

l "+; 1/""""']' L on2X"+') ~2ml;-- m + 
X 

x P r ~  1 - 0 . 0 0 3 4 5 6 3  I(2A- l)a 2-" 

+ ( n - l ) ( l - 2 n )  x(~-~)  3] 

a n +  1 11 
L 6ran2X"+'):\2mn . . . . .  -- m + 1) 1'-"'''"+ ] - '  

x Pr~l~x 3 + 
J 
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Equation (70) reduces exactly to equation (3.5) of 
Chao [10] for Newtonian wedge flow when n is unit)'. 
However, it differs from equation (42a) in Chen et aL 
The difference resulted from the choice of the 
parameter, c given in equation (34). Chen chose c 
= [3(m + 1)]/[2(12 + 1 )], probably for the reason that 
the expression o fc  could reduce to that of Chao et al. 
for the case of Newtonian fluids. The c in Chen et al. 
however, is only good for wedge flow and thus cannot 
be used for the general geometry since it contains the 
wedge parameter m. 

The numerical results for Nu, (Re~)-1(, +11 from the 
two analyses are tabulated in Table 5 for n = 0.520 and 
1.60. They agree to within 3% in most cases. 

The accuracy is examined again by comparing the 
present results with those of Lee et al. and Acrivos et al. 
The two analyses in the literature have dealt with 
isothermal surface temperatures, that is to say, X = 1.0 
in the present analysis. This isothermal temperature 
distribution is of particular importance in this analysis 
because the largest error will occur in the series 
solution of the energy equation at this thermal 
boundary condition. The agreement of the results 
between Lee et al. and the present method is very good 
(maxinmm 0.5% difference) for a right-angle wedge 
flow as illustrated in Fig. 3. For flow past a fiat plate, 
the discrepancy between Acrivos et aL and the present 
results for the selected values of n = 0.520 and 1.60 are 
6.9% at maximum. The difference is probably attrib- 
uted to the number of non-zero terms in the series 
solution of the present analysis. For this special 
geometry, the number of non-zero terms in equation 
(70) reduces to three compared to four non-zero terms 

3.0 

2.5 

20 

"~x 15 

710 

o's 

', -' PRESENT METHO[) I 
' , , - - - - -LEE ~ ~ES m I 

Pr = I00 

Pr = I0 

Pr = I 

O 0  " i 

02 & ,'o ,~ zo 
n 

FIG. 3. Comparison of Nu~ (Re~,) - t  ~,+t~ for A = 0.5 and 
X =  1.0. 
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Table 5. Nu~Re~- t ~,+ ~ for wedge flow n = 0.520, A = 0.5 

n = 0.520 

Pr = 100 Pr = 10 Pr = 1 
present present present 

Xo/X method Chen [9] method Chen [9] method Chen [9] 

0.9 5.0721 5.0734 2.3158 2.3168 1.0344 1.0366 
0.8 4.0111 4.0154 1.8229 1.8225 1.8046 0.8086 
0.7 3.4950 3.5037 1.5,q30 1.5879 0.6925 0.6984 
0.6 3.1689 3.1836 1.4314 1.4392 0.6215 0.6295 
0.5 2.9366 2.9593 1.3233 1.3350 0.5708 0.5812 
0.4 2.7592 2.7920 1.2408 1.2574 0.5320 0.5453 
0.3 2.6174 2.6633 1.1748 1.1976 0.5010 0.5177 
0.2 2.5003 2.5631 1.1203 1.1511 0.4753 0.4962 
0.1 2.4012 2.4873 1.0742 1.1158 0.4535 0.4800 
0.0 2,3158 2.4404 1.0344 1.0940 0.4347 0.4699 

n = 1.60 

0.9 4.8667 4.8662 2.2400 2.2399 1.0189 1.0192 
0.8 3.8556 3.8539 1.7703 1.7696 0.7998 0.8000 
0.7 3.3638 3.3601 1.5417 1.5402 0.6929 0.6929 
0.6 3.0530 3.0466 1.3972 1.3944 0.6252 0.6247 
0.5 2.8316 2.8216 1.2942 1.2898 0.5769 0.5757 
0.4 2.6625 2.6476 1.2156 1.2088 0.5398 0.5377 
0.3 2.5274 2.5057 1.1527 1.1428 0.5102 0.5067 
0.2 2.4158 2.3846 1.1007 1.0864 0.4856 0.4801 
0.1 2.3214 2.2753 1.0568 1.0355 0.4648 0.4561 
0.0 2.2400 2.1537 1.0189 0.9789 0.4468 0.4293 

for other geometries. It is certain that the discrepancy 
will decrease as more universal functions are carried 
out in the calculation. 

5.2. Flow orer a circular o'limter 
Boundary-layer flow over a long horizontal  circular 

cylinder placed in a power-law fluid flow is considered 
next. For  the velocity distribution at the outer edge of 
boundary layer, the following empirical formula given 
by Shah et al [3] is used in this analysis: 

U-~- = C1 + C2 (71) 

where C 1 = 0.92, C 2 = - 0.131, and L is the radius of 
the cylinder. Knowing the velocity distribution outside 
boundary layer, ~ becomes 

~0 ~'1" ~ = n K  u ~ - z  (Ct t w Czt3)2"-l dt. (72) 
P 

Then, A, (n + 1)~dA/d~ and (n + 1) 2 ~2 dZA/d~2 can 
be subsequently obtained as 

A = (n + 1)(Cx6 + C 2 6 3 ) - 2 n ( c  I .-{- 3C262) 

x f f  ( C l t + C 2 t 3 )  2 " - l d t  

dA 
(n+l )~q--Z-  = ( n +  1)2r [(C, + 3 C 2 6  2) 

x (Ct6 + C26S) -2" - 2n(Cl  + 3C262) 2 

X (C16 -]- C263)-'1n~ "}- 6C26(C16 + C263)1-4n~ "] 

2dZA 
(11 + 1)2~ ~ = (11 + 1)3(r + C263) 1-4" 

2 ~ - 4n(C1 + 3Cz6 )-(C1 6 + C,  ~53) -4" 

+ 6(1 - 8n)C26 x (C1 + 3C262)(Cj6 + C263)t -6"~ 

+ 8 n 2 ( C l +  3C262) 3 x ( C 1 6 + C 2 6 S ) - ~ " ~  

+ 6C2(6 + r  + C263) 2-6n] 

where 

X 
, 5 -  

L 

If the local wall friction coefficients, defined in equa- 
tion (20), are used, then 

~Cf Re I.~"+1) = 

1 i l l  
1 1 

+ 1) f r  C2tS)2"-Xdt 

dA 
x (C z 6 + C2 63) 2" ~(0) + (n + 1)~ -d~--f'~ (0) 

/(4 

+ (12 + 1) ~ - d ~ f ~  (0) + . . .  (73) 
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Table 6. ~ Cr Re I"~"§ i~ for flow over a circular cylinder 

n = 0.520 n = 1.60 
x / L  A �89 Ct Re I ~.+ t~ A ~ Cf Re t ~.+ lj 

0.1 1.4516 0.2445 0.81591 0.05869 
0.2 1.4422 0.3902 0.80826 0.1360 
0.4 1.3929 0.6095 0.79029 0.3030 
0.6 1.3046 0.7659 0.75854 0.4561 
0.8 1.1709 0.8661 0.70657 0.5680 
1.0 0.9799 0.9015 0.62321 0.6169 
1.2 0.7118 0.8859 0.48668 0.5825 
1.4 0.3328 0.7901 0.25137 0.4571 
1.5 0.0844 0.6791 0.067955 0.3462 
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qG. 4 .  Comparison of -~ Q Re I ~r + ~ for flow over a circular 
cylinder. 

The numerical values of 1/2 Cf R e  I ~"+ " a r e  calculated 
at the specified streamwise location x and tabulated in 

Table 6. 
There are several articles dealing with this type of 

flow [3, 18]. Recently, Lin et  al. [17] presented a 

laminar momentum boundary-layer analysis for 
power law fluids by using the Merk type of series 

expansion method. The numerical results of 1/2 Cr 
R e  t ~"+ ~ are compared with those ofLin  et al. in Fig. 4. 
They show good agreement in the regions where x / L  is 
small but  deviate as the flow develops along the body. 
This consequence can be predicted because the first 
term solution, i.e. fo function, does not contain the 
perturbat ion effect even though the two-term velocity 
distribution of Ur was used in their article. 

The rate of heat transfer at the wall, which was 
expressed in terms of Nu R e -  ~ '~"+ 1~ can be obtained by 
using equation (63). As we have seen in the derivation 
of the general expression of N u  R e  - I x "+l~ ,  the ex- 

pression reduced exactly to that of Jeng et al. for 

Newtonian fluids. Since its accuracy has already been 

examined and discussed extensively in the case of 
Newtonian fluids, no at tempt will be made to calculate 
N u  R e  -1 - t "+l j  for n = 1.0. The two values of n are 

Table 7. Nu R e - 1 ~ , ,  ,~ for flow over a circular cylinder 

n = 0.520 
Pr = 100 Pr = 10 

x / L  A xo/L = 0.0 xo /L  = 0.5 xo/L  = 0.0 xo/L = 0.5 
P r =  I 

xo/L = 0.0 xo/L = 0.5 

0.1 1.4516 2.1373 - -  0.9548 - -  0.4043 - -  
0.2 1.4422 2.2763 - -  1.0106 - -  0.4203 - -  
0.4 1.3929 2.3919 - -  1.0547 - -  0.4308 - -  
0.6 1.3046 2.4137 4.3836 1.0621 1.9779 0.4318 0.8605 
0.8 1.1709 2.3731 3.2947 1.0451 1.4737 0.4248 0.6257 
1.0 0.9799 2.2651 2.8540 1.0011 1.2750 0.4112 0.5400 
1.2 0.7118 2.1218 2.5358 0.9470 1.1394 0.3998 0.4896 
1.4 0.3328 1.8976 2.1915 0.8622 1.0291 0.3810 0.4446 
1.5 0.0844 1.7027 1.9401 0.7852 0.8954 0.3593 0.4104 

n = 1.60 
0.1 0.8112 3.5667 - -  1.6013 - -  0.6818 - -  
0.2 0.8071 3.3756 - -  1.5213 - -  0.6550 - -  
0.4 0.7900 3.1573 - -  1.4278 - -  0.6208 - -  
0.6 0.7584 2.9820 4.6075 1.3512 2.1067 0.5908 0.9440 
0.8 0.7065 2.8033 3.4104 1.2724 1.5546 0.5589 0.6908 
1.0 0.6232 2.6029 2.9430 1.1936 1.3417 0.5231 0.5965 
1.2 0.4867 2.3668 2.5839 1.0794 1.1802 0.4803 0.5273 
1.4 0.2514 2.0763 2.2049 0.9531 1.0211 0.4311 0.4627 
1.5 0.0680 1.8852 2.0045 0.8717 0.9271 0.4013 0.4270 
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chosen as n = 0.520 and 1.60 representing pseudoplas- 
tic fluids and dilatant fluids, respectively. The effect of 
the Prandtl  number is also examined by using Pr = 
1, 10, and 100 for each n value. By using the known 
information on the wall velocity gradient, Nu 
Re - ' ~ " + "  can be calculated at any streamwise 
location for the given value of X. As mentioned 
in the previous section, the upper bound of  error will 
occur at X = 1 in the series solution of the temperature 
field because X varies from zero to one. Thus, the two 
different surface temperature distributions are chosen 
as xo/L = 0.0 which corresponds to an isothermal and 
xo/L = 0.5 for a step change temperature distribution. 
Since the series is semidivergent at the fourth term, the 
Euler summation method has been used. The numeri- 
cal results are tabulated in Table 7. 

6. CONCLUSIONS 

Momentum and heat transfer in power-law fluid 
flow over arbitrarily shaped 2-dim. or axisymmetrical 
bodies with non-isothermal surfaces are theoretically 
examined. The Merk-Meksyn  series expansion me- 
thod and the generalized coordinate transformation 
can transform the partial differential momentum and 
energy equations into two sets of infinite-sequence 
type ordinary differential equations, respectively. The 
solutions to these sets of differential equations can be 
obtained as universal functions which are tabulated 
and for all geometries. The technique presented in this 
analysis provides a general, accurate, and relatively 
simple method to analyze the transport phenomena in 
laminar boundary layer of power-law fluids. In appli- 
cation, the present analysis shows better results than 
those of ref. [9] even for wedge flow when predicting 
the rate of heat transfer. Although Lin et al. El7] 
published an analysis of momentum transfer El9], it 
can be concluded that the present analysis is a 
significant improvement over the existing literature. 
Using the results of the present analysis, the heat 
transfer problem with any arbitrarily-prescribed sur- 
face temperature can be analyzed by the method of 
superposition. The authors also believe that the im- 
proved results of the velocity and temperature fields 
given can significantly improve the prediction of mass 
transfer in power law fluids with hetrogeneous surface 
reaction. 
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TRANSFERT DE QUANTITE DE MOUVEMENT ET DE CHALEUR DANS DES FLUIDES A 
LOI PUISSANCE EN MOUVEMENT AUTOUR DE CORPS BIDIMENSIONNELS OU 

AXISYMETRIQUES 

R~sumd--On 6tudie thdoriquement les transferts de quantitd de mouvement et de chaleur dans l'6coulement 
de fluides a loi puissance autour de corps de forme quelconque bidimensionnelle ou axisym6trique. La 
technique de ddveloppement en sdrie du type de Merk est utilisde pour l'analyse de quantitd de mouvement. 
Pour le transfert thermique convectif, une transformation de coordonn4es g6ndralis6es est employee pour 
d6terminer le champ de tempdrature dans la couche limite laminaire pour le corps avec un changement par 
dcheIon de la temperature pari~tale. Pour les transferts de quantit~ de mouvement et de ehaleur, la solution 
des ~quations est obtenue par des fonctions universelles qui sont indf:pendantes de la g6om6trie. Les solutions 
numdriques et analytiques des fonctions universelles sont donndes et appliqu&s ai l'~eoulement autour d'un 

diadre et autour d'un cylindre circulaire. 
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I M P U L S -  U N D  W,~RMEAUSTAUSCH BEI DER S T R O M U N G  VON " 'POWER-LAW" 
F L U I D E N  OBER Z W E I D I M E N S I O N A L E  ODER A C H S E N S Y M M E T R I S C H E  K O R P E R  

Zusammenfassung- -Es  wird der Impuls-  und W/irmeaustausch bei der Str(3mung yon "power- 
law"----Fluiden fiber beliebig gestaltete zwei-dimensionale oder achsensymmetrische K6rper  theoretisch 
untersucht. Ffir die lmpulsberechnung wird die Reihenentwicklung nach Merk verwendet. Beim konvektiven 
Wnrmefibergang ~vird eine verallgemeinerte Koordinatentransformation vorgeschlagen, um das Tempera-  
turfeld in der laminaren Grenzschicht des K6rpers  bei stufenweiser ~nde rung  der Temperaturverteilung der 
Oberfl~che zu bestimmen. Sowohl beim Impuls- als auch beim W/irmeaustausch erh/ilt man die L(3sungen 
der Erhaltungsgleichungen als universelle Funktionen, die yon der Geometrie unabh/ingig sind. Die 
L6sungen der universellen Funktionen werden in numerischer und  geschlossener Form gewonnen. Sie 

werden zur Untersuchung der Kei ls t rbmung und der Umstr / imung eines Kreiszylinders angewendet. 

FIEPEttOC HMFiY.JIBCA H TEFIJ1A FIPH O B T E K A H H H  FIJIOCKHX H 
O C E C H M M E T P H q H b l X  TE.FI C T E I I E H H b l M H  XZH,/1KOCT.,qMH 

AmlolauHa--FlpoBe.aelto leopeTltqecKoe ItCC:le.aoBamle tlepenoca ItMny.lbca tl Ten.'xa npn  O6TeKaltHll 
cTcneIItIBIMH ;,KII.,2KOCT~IMIi FI,1OCKItX tt.'lH ocecttst.'.telptt,~nblX Te.'t rlpoti3BO.lbllOi~ qbopMbI. J~.'la 
alta.lli3a nepeuoca itxmy.lbca ltcno.'lb3yeTc~l .".tepKOBCKtI• Tttn paa.aoxemln B p~a- n cay,~ae 
KOItBeKI|IBtlOI'O nepettoca Ten.'~a .a.an atta."ltl3a -reMnepaTyptloro no3fl B .qa.xmllapttoM llorpallllqllOM 
c.aoe ila re.ae ilpll clynew~aroxl tl3Mettelltlll pacnpe.ae:temia TeMnepaTypbl noBepXttOCTll IlCnO.'lb3yeTC~ 
.".leTO.a 0606ltlellltOrO IIpeo6pa30Bantl~l KOOp.RmtaT. KaK .a.aa nepenoca IlMny3bCa. TaK tl ,,'],.'1~1 nepeltoca 
lell.qa llO.'lyqetlo petuell~le OClIOBtlblX ypaBtteltttfi B Bll,"]e yllttBepCa.qbtlblX (~)yltKll.ltfi0 KOTOphle lie 
3aBItCaT OT reo.',leTpml 3a,.q.aqzL Hafi,aeHbl 'r pememte ~t BblpaxeHlte B 3a.'.tKItylOfi qbopste 
,~q.'D.1 yllltBepc~L'IblllblX (~3~,'ttKIlltli, KOlOpbte 3areM Ilcno.'Ib3ylOlC~l h.'l$1 alta.qtl3a OOTeKalltl~l K.'llllta II 

KO.qblleBOFO I 1•t.'I Htthpa. 


